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Résumé

L’objet de cette thèse est l’étude de certains phénomènes de propagation de fronts
pulsatoires pour des problèmes de réaction-advection-diffusion du modèle{

ut = ∇ · (A(z)∇u) + q(z) · ∇u+ f(z, u), t ∈ R, z ∈ Ω,

ν · A ∇u(t, z) = 0, t ∈ R, z ∈ ∂Ω,

où Ω ⊆ RN est un domaine périodique non borné. Les coefficients de l’équation et le
domaine Ω seront périodiques par rapport aux variables d’espace. La thèse se compose
de trois parties qui correspondent à trois articles soumis à des revues internationales
avec comité de lecture. En fait, l’existence de fronts progressifs pulsatoires dépend
fortement du type de la nonlinéarité. Si la nonlinéarité f est de type “KPP”, il existe
une vitesse minimale c∗. La première partie porte sur les comportements asymptotiques
de la vitesse minimale c∗ de propagation des ondes progressives dans le cas “KPP”
(utilisant une formule variationnelle de c∗ donnée par Berestycki, Hamel, et Nadirashvili
en 2002). Dans la seconde partie, on donne des formules min−max et max−min pour
les vitesses de propagation selon le type de la réaction. La troisième partie concerne la
dépendance de la vitesse par rapport à la période spatiale dans un cadre plus général
(concernant la diffusion et la nonlinéarité) que celui de la première partie, mais en
dimension N = 1 seulement.

Mots clés: KPP, réaction-diffusion, front progressifs pulsatoires, vitesse de prop-
agation, homogénéisation, biological invasion models, combustion, pulsating travelling
fronts, minimal speed of propagation, homogenization, fragmentation.
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CHAPITRE 1

Introduction générale

L’objet de cette thèse est l’étude de certains phénomènes de propagation de fronts
pulsatoires pour des problèmes de réaction-advection-diffusion non linéaires dans des
milieux hétérogènes non bornés. Les coefficients de l’équation et le domaine Ω seront
périodiques par rapport aux variables d’espace. En fait, l’existence de fronts progres-
sifs pulsatoires dépend fortement du type de la nonlinéarité. La thèse se compose de
trois parties qui correspondent à trois articles soumis à des revues internationales avec
comité de lecture. Si la nonlinéarité f est de type “KPP”, il existe une vitesse minimale
c∗. La première partie porte sur les comportements asymptotiques de la vitesse mini-
male c∗ de propagation des ondes progressives dans le cas “KPP”. Grâce à une formule
variationnelle pour cette vitesse (donnée par Berestycki, Hamel, et Nadirashvili [3]),
nous traitons c∗ comme une fonction du facteur de diffusion, du facteur de réaction, et
du paramètre de périodicité afin d’étudier les variations et les comportements asymp-
totiques de c∗ par rapport aux coefficients du problème. A la fin de cette partie, on
applique les résultats obtenus pour résoudre un problème d’homogénéisation. Dans la
seconde partie, on donne des formules min−max et max−min pour les vitesses de
propagation selon le type de la réaction. La troisième partie concerne la dépendance de
la vitesse par rapport à la période spatiale dans un cadre plus général (concernant la
diffusion et la nonlinéarité) que celui de la première partie, mais en dimension N = 1

seulement.

Les équations de réaction-diffusion apparaissent naturellement dans la modélisation
de lévolution de la température lors dune réaction de combustion, où la chaleur est créée
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Chapitre 1. Introduction générale

par la réaction et diffuse selon la loi de la chaleur, et peut également être transportée
dans le milieu (vent, aération), ce qui donne un terme dadvection supplémentaire. De
même, létude de lévolution de la densité dune population animale dans un milieu dont
les caractéristiques sont plus ou moins favorables à la survie et au développement de
lespèce considérée se modélise par une équation de réaction-diffusion, où la diffusion
traduit les mouvements de la population et le terme de réaction regroupe les naissances,
les décès en prenant en compte linfluence du milieu (dépendance spatiale du terme de
réaction), et les interactions avec le milieu ou dautres espèces.

Les premières analyses mathématiques des équations de réaction-diffusion ont été
entreprises dans les années 1930, principalement létude de léquation unidimensionnelle

∂tu = ∂xxu+ f(u)

0 < u < 1.

En 1937, Fisher [9] et Kolmogorov, Petrovsky et Piskunov [21] ont étudié le modèle
homogène

ut −∆u = f(u) dans RN , (1.0.1)

avec une nonlinéarité f satisfaisant{
f(0) = f(1) = 0, f ′(1) < 0, f ′(0) > 0,

f > 0 dans (0, 1), f < 0 dans (1,+∞),
(1.0.2)

∀s ∈ [0, 1] , f(s) ≤ f ′(0)s. (1.0.3)

Comme archétypes de nonlinéarités “KPP”, on a f(s) = s(1− s) et f(s) = s(1− s2).

Un front progressif qui se propage dans la direction d’un vecteur −e ∈ RN (|e| = 1)
est une solution u de (1.0.1) telle que{

∀(t, x) ∈ R× RN , u(t, x) = φ(x · e+ ct),

φ(−∞) = 0 et φ(+∞) = 1,
(1.0.4)

La valeur c est appelée la vitesse du front dans la direction de −e. Suite à cette dernière
définition, l’équation (1.0.1) est équivalente à{

−φ′′ + c φ′ = f(φ) dans R× RN ,
φ(−∞) = 0 et φ(+∞) = 1.

(1.0.5)

Kolmogorov, Petrovsky et Piskunov [21] ont montré qu’il existe une valeur c∗ =

2
√
f ′(0) telle que les fronts progressifs (c, u) de l’équation (1.0.1) tels que 0 < u < 1

2



1.1. Cadre hétérogène périodique, quelques résultats connus

existent si et seulement si c ≥ c∗(e) = 2
√
f ′(0). De plus, pour chaque c ≥ 2

√
f ′(0), le

front u est unique à une translation près en t.

A partir de là, de très nombreux articles, parmi lesquels ceux de Aronson et Wein-
berger [1], Fife et McLeod [8], Johnson et Nachbar [18] ou encore Kanel [19] ont été
consacrés à des problèmes liés à lexistence, à l’unicité et à la stabilité de telles ondes
planes progressives, en considérant différents types de nonlinéarités et de domaines
despace donnés par la modélisation des situations physiques, chimiques et biologiques
étudiées. De nombreux travaux ont porté sur les systèmes en dimension 1 despace (voir
par exemple [31]).

Lorsque le milieu nest plus considéré comme homogène, les coefficients de léquation,
et en particulier le terme de réaction, dépendent également des variables despace ou
de temps. On ne peut alors plus trouver de solutions en forme donde plane pour les
nouvelles équations considérées, y compris en dimension 1. Cest pourquoi une nouvelle
notion moins exigeante mais plus générale, celle donde progressive pulsatoire, cest-à-
dire donde se propageant dans une direction donnée, au profil variable mais se repro-
duisant périodiquement, a été proposée, dans les milieux périodiques, par Shigesada,
Kawasaki, et Teramoto [26] en 1985 et par Shigesada et Kawazaki [29] en 1997. Hudson
et Zinner [16] ont montré en 1995 lexistence dondes progressives pulsatoires solutions
de léquation en dimension 1. Concernant les fronts progressifs pour des équations de
réaction-diffusion avec de coefficients dependant des variables de temps et d’espace, on
peut voir Fréjacques [10], Nadin [22, 23], et Shen [27, 28].

1.1 Présentation du cadre hétérogène périodique et
de quelques résultats connus

Dans les chapitres 2 et 3 on s’intéresse au modèle hétérogène suivant :{
ut = ∇ · (A(z)∇u) + q(z) · ∇u+ f(z, u), t ∈ R, z ∈ Ω,

ν · A ∇u(t, z) = 0, t ∈ R, z ∈ ∂Ω,
(1.1.1)

où ν(z) est la normale extérieure au point z ∈ ∂Ω. La condition au bord ν ·A∇u(x, y) =

0 est équivalente à ∑
1≤ i,j≤N

νi(x, y)Aij(x, y)∂xju(t, x, y) = 0.

On note que si A = IdMN (R), la condition au bord est alors réduite à la condition de
Neumann usuelle.

3



Chapitre 1. Introduction générale

Dans la suite, on va détailler les hypothèses sur le domaine Ω, la matrice de diffusion
A, le flot d’advection q et la réaction f qui apparaissent dans l’équation (1.1.1) :

Le domaine Ω est un ouvert connexe de RN de classe C3 qui satifait
∃R ≥ 0, ∃ d ≥ 1 ∈ N, ∀z = (x, y) ∈ Ω ⊆ Rd × RN−d, |y| ≤ R,

∃L1 > 0, · · · , Ld > 0, ∀ (k1, · · · , kd) ∈ L1Z× · · · × LdZ, Ω = Ω +
d∑

k=1

kiei,
(1.1.2)

où (ei)1≤i≤N est la base canonique de RN . Comme d ≥ 1, le domaine Ω est non borné.

Avant d’aller plus loin, on note que ce cadre généralise plusieurs types de configu-
rations géométriques. Le cas où Ω = RN correspond à d = N où L1, · · · , LN peuvent
être des constantes positives quelconques. Dans ce cadre, on peut aussi considérer le
cas de l’espace RN avec un ensemble périodique de trous. Le cas d = 1 correspond à
des domaines qui sont non bornés dans une seule direction. C’est-à- dire des cylindres
infinis qui peuvent avoir une frontière oscillante, et qui peuvent contenir un ensemble
périodique de trous.

Définitions 1.1.1 (Cellule de périodicité et champs L-périodiques) Etant don-
née un ensemble Ω satisfaisant (1.1.2), on définit l’ensemble

C = {(x, y) ∈ Ω; x1 ∈ (0, L1), · · · , xd ∈ (0, Ld)}

comme la cellule de périodicité de Ω. De plus, on dit que le champ w : Ω 7→ Rp est
L-périodique par rapport à x si

∀k = (k1, · · · , kd) ∈
d∏
i=1

LiZ,

w(x1 + k1, · · · , xd + kd , y) = w(x1, · · · , xd, y) p.p. dans Ω.

Le terme de diffusion est une matrice symétrique A = A(x, y) = (Aij(x, y))1≤i,j≤N

de classe C2,δ( Ω ) (avec δ > 0) qui satisfait{
A est L-périodique par rapport à x, et ∃ 0 < α1 ≤ α2 tel que
∀(x, y) ∈ Ω,∀ ξ ∈ RN , α1|ξ|2 ≤

∑
1≤i,j≤N Aij(x, y)ξiξj ≤ α2|ξ|2.

(1.1.3)

L’advection q = (q1(x, y), · · · , qN(x, y)) est un champ vectoriel de classe C1,δ(Ω)
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1.1. Cadre hétérogène périodique, quelques résultats connus

(avec δ > 0) tel que 

q est L-périodique par rapport à x,

∇ · q = 0 dans Ω ,

q · ν = 0 sur ∂Ω ,

∀ 1 ≤ i ≤ d,

∫
C

qi dx dy = 0.

(1.1.4)

Finalement, le terme de réaction ( ou la source nonlinéaire) est une fonction positive
f = f(x, y, u) définie dans Ω× R telle que

f est globalement Lipschitzienne dans Ω× R,
∀ (x, y) ∈ Ω, ∀ s ∈ (−∞, 0] ∪ [1,+∞), f(s, x, y) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1− ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′).

(1.1.5)

On suppose que
f est L-périodique par rapport à x. (1.1.6)

Par ailleurs, on suppose que la fonction f satisfait une des deux propriétés suivantes{
∃ θ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ s ∈ [0, θ], f(x, y, s) = 0,

∀ s ∈ (θ, 1), ∃ (x, y) ∈ Ω tel que f(x, y, s) > 0,
(1.1.7)

ou {
∃δ > 0, la restriction de f à Ω × [0, 1] est de classe C1, δ,

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0.
(1.1.8)

Définition 1.1.2 Si la nonlinéarité f satisfait (1.1.5), (1.1.6) et (1.1.7), on dit que f
est de type “combustion”. La valeur θ est appelée la temperature d’ignition. Si f satisfait
(1.1.5), (1.1.6) et (1.1.8), on dit alors que f est de type “ZFK” (pour Zeldovich - Frank
Kamenetskii).
Si f est une nonlinéairité “ZFK” satisfaisant les conditions

ζ(x, y) = f ′u(x, y, 0) = lim
u→0+

f(x, y, u)/u > 0, et (1.1.9)

∀ (x, y, s) ∈ Ω× (0, 1), 0 < f(x, y, s) ≤ f ′u(x, y, 0)× s, (1.1.10)

on dit que f est de type “KPP” (pour Kolmogrov, Petrovsky, et Piskunov).

Dans le cadre hétérogène périodique décrit ci-dessus, on peut définir les fronts pro-
gressifs pulsatoires :
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Chapitre 1. Introduction générale

Définition 1.1.3 Soient e = (e1, · · · , ed) ∈ Rd un vecteur unitaire (|e| = 1) et ẽ =

(e1, · · · , ed, 0, · · · , 0) ∈ RN . On dit que la fonction u = u(t, x, y) est un front progressif
pulsatoire qui se propage dans la direction de −e avec une vitesse c 6= 0 si u est une
solution classique de

ut = ∇ · (A(x, y)∇u) + q(x, y) · ∇u+ f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,

∀ k ∈
d∏
i=1

LiZ, ∀ (t, x, y) ∈ R × Ω, u(t+
k · e
c
, x, y) = u(t, x+ k, y),

lim
x.e→−∞

u(t, x, y) = 0, and lim
x.e→+∞

u(t, x, y) = 1,

0 ≤ u ≤ 1,

(1.1.11)

où les limites ci-dessus sont locales en t et uniformes en y et toutes les directions de
Rd qui sont orthogonales à e.

Plusieurs articles et travaux ont été consacrés à l’analyse des phénomènes de pro-
pagation pour des équations de réaction-diffusion ou d’autres types d’équations hété-
rogènes périodiques. Comme résultats d’existence de fronts progressifs (c, u) dans des
milieux hétérogènes nonbornés et périodiques on peut voir Namah, Roquejoffre [24],
Papanicolaou, Xin [25], J. Xin [32], J. Xin [33], et X. Xin [34] dans le cas unidimen-
sionnelle ou dans le cas Ω = RN . Pour l’existence dans des problèmes similaires, on
peut voir Brauner, Fife, Namah [4] et Heinze [13]. Dans le cadre hétérogène périodique
décrit ci-dessus, Berestycki et Hamel [2] ont traité la question d’existence de fronts
progressifs pulsatoires selon la non linéarité f du modèle (1.1.11) :

Théorème 1.1.4 (Berestycki, Hamel [2]) Si la nonlinéarité f est de type “Com-
bustion”, alors pour toute direction e de Rd, il existe une solution classique (c, u) de
(1.1.11). De plus, la vitesse c est positive et unique, et la fonction u = u(t, x, y) est
croissante en t et elle est unique à une translation près en t. Précisément, si (c1, u1) et
(c2, u2) sont deux solutions classiques de (1.1.11), alors c1 = c2 et il existe h ∈ R telle
que u1(t, x, y) = u2(t+ h, x, y) pour tout (t, x, y) ∈ R× Ω.

Théorème 1.1.5 (Berestycki, Hamel [2]) Si f est de type “ZFK”, alors il existe
c∗Ω,A,q,f (e) > 0 telle que problème (1.1.11) n’a pas une solution (c, u), avec ut > 0 dans
R × Ω, si c < c∗Ω,A,q,f (e). Par contre, pour tout c ≥ c∗Ω,A,q,f (e), il existe une solution
(c, u) avec ut > 0. La valeur c∗Ω,A,q,f (e) est appelée la vitesse minimale de propagation
du problème (1.1.11).
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1.1. Cadre hétérogène périodique, quelques résultats connus

Très recemment, Hamel et Roques [12] ont montré l’unicité de fronts pulsatoires pro-
gressifs, à une translation près en t, pour toute c ≥ c∗Ω,A,q,f (e) lorsque la nonlinéarité f
est de type “KPP.”

Le théorème 1.1.5 s’applique en particulièr dans le cas “KPP”. De plus, Berestycki,
Hamel et Nadirashvili [3] ont montré une formule variationnelle pour la vitesse minimale
c∗Ω,A,q,f (e) du modèle (1.1.11) avec une nonlinéarité de type “KPP” :

Théorème 1.1.6 (Berestycki, Hamel, Nadirashvili [3]) Lorsque la nonlinéarité f
est de type “KPP”, la vitesse minimale c∗Ω,A,q,f (e) de propagation dans la direction de
−e du problème (1.1.11) est donnée par

c∗Ω,A,q,f (e) = min
λ>0

kΩ,e,A,q,ζ(λ)

λ
, (1.1.12)

où kΩ,e,A,q,ζ(λ) est la valeur propre principale de l’opérateur LΩ,e,A,q,ζ,λ défini par

LΩ,e,A,q,ζ,λψ := ∇ · (A∇ψ) + 2λẽ · A∇ψ + q · ∇ψ
+[λ2ẽAẽ+ λ∇ · (Aẽ) + λq · ẽ+ ζ]ψ dans Ω,

(1.1.13)

sur l’ensemble

Eλ =
{
ψ = ψ(x, y) ∈ C2(Ω), ψ L-périodique par rapport à x et
ν · A∇ψ(x, y) = −λ ν · Aẽψ(x, y) sur ∂Ω} .

Dans le cadre homogène où Ω = RN , f = f(u), q = 0 et A = Id, on note que
(1.1.12) implique la formule KPP c∗ = 2

√
f ′(0) (voir [21]). En fait, la fonction propre

principale, qui est positive et unique à multiplication par une constante positive près,
sera ψ = constante (ζ = f ′(0) dans ce cas). Donc, pour tout λ > 0, on aura k(λ) = λ2 +

f ′(0) et alors min
λ>0

k(λ)

λ
= 2
√
f ′(0). La formule (1.1.12) est très utile dans l’analyse des

comportements asymptotiques et des variations de la vitesse minimale c∗ par rapport
aux coefficients de diffusion, de réaction et d’advection et par rapport aux paramètres
de périodicité et la géométrie du domaine Ω dans le modèle (1.1.11). Utilisant cette
formule, plusieurs articles ont étudié de tels problèmes (voir par exemple Berestycki,
Hamel, Nadirashvili [3], El Smaily [5], El Smaily [7], Heinze [14], Ryzhik, Zlatoš [30] et
Zlatoš [35]).
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Chapitre 1. Introduction générale

1.2 Résultats principaux

Dans cette thèse, nous traitons le problème de réaction-advection-diffusion dans le
cadre hétérogène-périodique de la section 1.1.

Dans toute cette section, e ∈ Rd est un vecteur tel que |e| = 1 et ẽ = (e, 0, · · · , 0) ∈
RN .

Le chapitre 2 correspond à l’article El Smaily [5]. Il est consacré à l’analyse asymp-
totique des variations de la vitesse minimale de propagation par rapport aux coefficients
de diffusion, de réaction et d’advection et par rapport aux paramètres de périodicité
dans le cas “KPP”.

Concernant la vitesse minimale en présence d’une grande diffusion MA (avec M >

0), on a montré le théorème suivant

Théorème 1.2.1 (El Smaily [5]) Soient f de type “KPP” (voir Définition 1.1.2), Ω,

A et q satisfaisant (1.1.2), (1.1.3) et (1.1.4) respectivement. Nous supposons aussi que
∇.Aẽ ≡ 0 dans Ω et ν · Aẽ = 0 sur ∂Ω. Pour tous M > 0 et 0 ≤ γ ≤ 1/2, considérons
le problème{

ut = M ∇ · (A(x, y)∇u) +Mγ q(x, y) · ∇u+ f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,
(1.2.1)

dont la diffusion est la matrice MA. Alors,

lim
M→+∞

c∗Ω,MA,Mγq,f (e)√
M

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy,

où
−
∫
C

ẽAẽ(x, y)dx dy =
1

|C|

∫
C

ẽAẽ(x, y)dx dy,

et |C| est la mesure de Lebesgue de la cellule de périodicité C de Ω.

Grâce à ce théorème, on a trouvé la limite par homogénéisation de la vitesse mini-
male lorsque la cellule de péiodicité Cε = εC devient très petite. Pour tout ε > 0, on
définit Aε, qε, et fε comme

∀(x, y) ∈ Ω, Aε(x, y) = A
(x
ε
,
y

ε

)
, qε(x, y) = q

(x
ε
,
y

ε

)
,

et fε(x, y, u) = f
(x
ε
,
y

ε
, u
)
.

(1.2.2)
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1.2. Résultats principaux

Théorème 1.2.2 (El Smaily [5]) Soit Ω un domaine satisfaisant (1.1.2) avec une
cellule de périodicité C. Pour tout ε > 0, on pose Ωε = εΩ. Sous les mêmes hypothèses
que dans le Théorème 1.2.1, on considère le problème{

uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u
ε), dans R× Ωε,

νε · Aε ∇uε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ωε,
(1.2.3)

Alors,

lim
ε→0+

c ∗Ωε, Aε, qε, fε
(e) =2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy. (1.2.4)

Concernant le problème d’homogénéisation lorsque Ω = RN ,

ut(t, x, y) = ∇ · (A
L
∇u)(t, x, y) + q

L
· ∇u(t, x, y) + f

L
(x, y, u),,

= ∇ · (A(
x

L
,
y

L
)∇u)(t, x, y) + q(

x

L
,
y

L
) · ∇u(t, x, y) + f(

x

L
,
y

L
, u),

(1.2.5)
on a obtenu le résultat suivant :

Lorsque f est de type “KPP”, A et q satisfont (1.1.3) et (1.1.4) respectivement. Si
∇.Aẽ ≡ 0 dans RN , alors

lim
L→ 0+

c∗RN ,A
L
, q

L
, f

L

(e) = 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy. (1.2.6)

Le théorème suivant donne un équivalent de la vitesse minimale avec une petite
réaction Bf (B > 0) :

Théorème 1.2.3 (El Smaily [5]) Soient B > 0, γ ≥ 1/2 et f une nonlinéarité de
type “KPP”. Supposons que Ω, A et q satisfont (1.1.2), (1.1.3) et (1.1.4) respectivement,
∇.Aẽ ≡ 0 dans Ω et ν · Aẽ = 0 sur ∂Ω. Alors,

lim
B→0+

c∗Ω,A,Bγq,Bf (e)√
B

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy.

Pour le comportement asymptotique de la vitesse minimale de propagation en pré-
sence d’une petite diffusion εA (ε > 0), nous considérons un cadre moins général que
celui au Théorème 1.2.1 que nous décrivons ci-dessous.

Dans ce cadre, nous choisissons Ω = R× ω ⊆ RN , avec ω ⊆ Rd×RN−d−1 (d ≥ 0).
Si d = 0 alors ω est un domaine borné et connexe de classe C3 dans RN−1. Par contre, si

9



Chapitre 1. Introduction générale

1 ≤ d ≤ N−1, alors ω est un domaine (L1, . . . , Ld)-périodique dans RN−1 qui satisfait
(1.1.2). Donc, Ω est un domaine de RN qui est (l, L1, . . . , Ld)−périodique (pour tout
l > 0) satisfaisant (1.1.2). Un élément de Ω = R×ω aura alors la forme z = (x, y) avec
x ∈ R et y ∈ ω ⊆ Rd × RN−1−d.

Concernant la nonlinéarité f = f(x, y, u), elle est de type “KPP” telle que
f ≥ 0, et est de classe C1, δ(R× ω × [0, 1]),

f est (l, L1, . . . , Ld)-périodique par rapport à (x, y1, . . . , yd), lorsque d ≥ 1,

f est l-périodique par rapport à x, lorsque d = 0,

(1.2.7)

et 
∀(x, y) ∈ Ω, f ′u(x, y, 0) ne dépend que de y. Posons ζ(y) = f ′u(x, y, 0).

∀ (x, y) ∈ Ω = R× ω, f ′u(x, y, 0) = ζ(y) > 0,
∀ (x, y, s) ∈ Ω × (0, 1), 0 < f(x, y, s) ≤ ζ(y) s.

(1.2.8)

Remarquons qu’il est possible de trouver une nonlinéarité f telle que f ′u(x, y, u) ne
dépend que de y tandis que f(x, y, u) dépend de x, y et u.

Enfin, la diffusion est une matrice symétrique A(x, y) = A(y) = (Aij(y))1≤i,j≤N de
classe C2,δ( Ω ) (δ > 0) qui ne dépend que de y et qui satisfait A est (L1, . . . , Ld)-périodique par rapport à (y1, . . . , yd),

∃ 0 < α1 ≤ α2, ∀ y ∈ ω,∀ ξ ∈ RN , α1|ξ|2 ≤
∑

1≤i,j≤N

Aij(y)ξiξj ≤ α2|ξ|2. (1.2.9)

Théorème 1.2.4 (El Smaily [5]) Soit e = (1, 0, . . . , 0) ∈ RN et ε > 0. Soient Ω =

R × ω ⊆ RN un domaine sous la forme décrite ci-dessus, f une nonlinéarité de type
“KPP” satisfaisant (1.2.7), (1.2.8), et A une matrice satisfaisant (1.2.9). Considérons
l’équation de réaction-diffusion{

ut(t, x, y) = ε∇ · (A(y)∇u)(t, x, y) + f(x, y, u), for (t, x, y) ∈ R× Ω,
ν · A∇u = 0 on R× R× ∂ω.

(1.2.10)

De plus, supposons que A et f satisfont une des deux alternatives suivantes{
∃α > 0, ∀y ∈ ω, A(y)e = αe,

f
′
u(x, y, 0) = ζ(y), pour tout (x, y) ∈ Ω,

(1.2.11)
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1.2. Résultats principaux

ou 
f
′
u(x, y, 0) = ζ est constante,
∀y ∈ ω, A(y)e = α(y)e, où
y 7→ α(y) est une fonction positive et (L1, . . . , Ld)−périodique dans ω.

(1.2.12)

Alors,

lim
ε→0+

c∗Ω,εA,0,f (e)√
ε

= 2
√

max
w

ζ
√

max
w

eAe. (1.2.13)

Remarque 1.2.5 (En présence d’une advection) Sous les mêmes hypothèses du

Théorème 1.2.4, prenons q = (q1(y), 0, . . . , 0) (y ∈ ω) où q 6≡ 0 dans R×ω et
∫
ω

q1 = 0.

Considérons l’équation de réaction-advection-diffusion{
ut = ε∇ · (A(y)∇u) + q1(y) ∂xu(t, x, y) + f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,
(1.2.14)

Utilisant les mêmes techniques que dans la preuve du Théoreme 1.2.4, on peut montrer
que

lim
ε→0+

c∗Ω,εA,q,f (e) = max
y∈ω

(− q1(y)) = max
ω

(− q.e). (1.2.15)

Le Théorème 1.2.4 implique le théorème suivant :

Théorème 1.2.6 (El Smaily [5]) Soit e = (1, 0, . . . , 0) ∈ RN , ω = RN−1, d =

N − 1, et l = L1 = . . . = LN−1 = 1. C’est-à-dire les coefficients de l’équation
sont (1, 1, . . . , 1)−périodiques par rapport à y. Un élément z ∈ RN aura la forme
z = (x, y) ∈ R×RN−1. Supposons que f(x, y, u) et A = A(y) satisfont (1.2.7), (1.2.8)
et (1.2.9) avec une des deux alternatives (1.2.11) ou (1.2.12). Pour tous L > 0, et
(x, y) ∈ RN , notons A

L
(y) = A(

y

L
) et f

L
(x, y, u) = f(

x

L
,
y

L
, u). Considérons le problème

de réaction-diffusion

ut(t, x, y) = ∇ · (A
L
∇u)(t, x, y) + f

L
(x, y, u), (t, x, y) ∈ R× RN

= ∇ · (A(
y

L
)∇u)(t, x, y) + f(

x

L
,
y

L
, u), (t, x, y) ∈ R× RN ,

(1.2.16)

sont (L, . . . , L)-périodiques par rapport à (x, y) ∈ RN . Alors,

lim
L→+∞

c∗RN ,A
L
, 0, f

L

(e) = 2
√

max
y ∈RN−1

ζ(y)
√

max
y ∈RN−1

e.Ae(y). (1.2.17)
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Remontant au résultat (1.2.6), on remarque que ce théorème donne la limite de
c∗
RN ,A

L
, q

L
, f

L

(e) quand L → 0+ sous l’hypothèse ∇.Aẽ ≡ 0 dans RN . Donc, pour

N = 1, ce théorème s’applique seulement lorsque la diffusion x 7→ a(x) est constante
sur R. Dans le chapitre 4 qui correspond à l’article [7], nous étudions, sans l’hypothèse
de diffusion constante, le modèle

∂u

∂t
=

∂

∂x

(
aL(x)

∂u

∂x

)
+ fL(x, u), t ∈ R, x ∈ R,

∀ k ∈ Z, ∀ (t, x) ∈ R × R, u(t+
kL

c
, x) = u(t, x+ kL),

lim
x→−∞

u(t, x) = 0 et lim
x→+∞

u(t, x) = 1,

(1.2.18)

les limites ci-dessus étant locales par rapport à t.

Le terme de diffusion aL satisfait

aL(x) = a(x/L),

a est une fonction 1-périodique de classe C2,δ(R) (avec δ > 0) qui satisfait

∃ 0 < α1 < α2, ∀ x ∈ R, α1 ≤ a(x) ≤ α2. (1.2.19)

Le terme de réaction est la fonction fL(x, ·) = f(x/L, ·), où f := f(x, s) : R×R+ → R
est 1-périodique par rapport à x, de classe C1,δ en (x, s) et C2 en s. Donc, aL et fL
sont L-périodiques par rapport à x. De plus, on suppose que

∀ x ∈ R, f(x, 0) = 0,

∃ M ≥ 0, ∀ s ≥M, ∀ x ∈ R, f(x, s) ≤ 0,

∀ x ∈ R, s 7→ f(x, s)/s est décroissante par rapport à s > 0.

(1.2.20)

On pose
µ(x) := lim

s→0+
f(x, s)/s,

et
µL(x) := lim

s→0+
fL(x, s)/s = µ

(x
L

)
.

Le taux de croissance µ peut être positif dans quelques régions (régions favorables) ou
négatif dans d’autres (régions défavorables). De plus, nous supposons que∫ 1

0

µ(x)dx > 0. (1.2.21)
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Dans le cadre décrit ci-dessus, nous avons montré les théorèmes suivants (voir Chapitre
4) qui généralisent des résultats donnés par Kinezaki, Kawasaki, Takasu, et Shigesada
[20] :

Théorème 1.2.7 (El Smaily, Hamel, Roques [7]) Dans le cadre décrit ci-dessus,
supposons que c∗R, a

L
, 0, f

L

est la vitesse minimale du modèle (1.2.18). Alors,

lim
L→0+

c∗R, a
L
, 0, f

L

= 2
√
<a>H <µ>A, (1.2.22)

où

<µ>A =

∫ 1

0

µ(x)dx et <a>H =

(∫ 1

0

(a(x))−1dx

)−1

= <a−1>−1
A

sont, respectivement, la moyenne arithmétique de µ et la moyenne harmonique de a
sur l’intervalle [0, 1].

Concernant les variations de L 7→ c∗
R, a

L
, 0, f

L

, nous avons obtenu le résultat suivant :

Théorème 1.2.8 (El Smaily, Hamel, Roques [7]) Sous les hypothèses du Théo-
rème 1.2.7, la fonction L 7→ c∗

R, a
L
, 0, f

L

est de classe C∞ dans un intervalle (0, L0)

pour certain L0 > 0. De plus,

lim
L→0+

dc∗
R, a

L
, 0, f

L

dL
= 0 (1.2.23)

et

lim
L→0+

d2c∗
R, a

L
, 0, f

L

dL2
= γ ≥ 0. (1.2.24)

Enfin, γ > 0 si et seulement si la fonction

µ

<µ>A

+
<a>H

a

n’est pas identiquement égale à 2.

Corollaire 1.2.9 Avec les notations de Théorème 1.2.8, si µ est constante et a n’est
pas constante, ou si a est constante et µ n’est pas constante, alors γ > 0 et donc L 7→
c∗
R, a

L
, 0, f

L

est strictement croissainte sur un intervalle ]0, L0] pour certain L0 > 0.

Dans le chapitre 3, on donne des formules min-max et max-min pour les vitesse
d’ondes progressives dans le cadre hétérogène périodique. Ces formules généralisent
celles données par Hamel [11], Heinze, Papanicolaou, Stevens [15], et A.I Volpert, V.A
Volpert, V.A Volpert [31].
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Notations 1.2.10 Notons

E =
{
ϕ = ϕ(s, x, y), ϕ est de classe C1,µ(R× Ω) pour tout µ ∈ [0, 1),

F [ϕ] ∈ C(R× Ω), ϕ est L−périodique par rapport à x, ϕs(s, x, y) > 0

dans R× Ω, ϕ(−∞, ., .) = 0, ϕ(+∞, ., .) = 1 uniformément dans Ω,

et ν · A(∇x,yϕ+ ẽϕs) = 0 sur R× ∂Ω} .

Pour tout φ ∈ E, nous notons Rϕ ∈ C(R× Ω) la fonction telle que

∀ (s, x, y) ∈ R× Ω,

R ϕ(s, x, y) =
F [ϕ](s, x, y) + q · ∇x,yϕ(s, x, y) + f(x, y, ϕ)

∂sϕ(s, x, y)
+ q(x, y) · ẽ.

Théorème 1.2.11 (El Smaily [6]) Soient e un vecteur de Rd tel que |e| = 1, Ω un
domaine satisfaisant (1.1.2) et f une nonlinéarité satisfaisant (1.1.5) et (1.1.6). De
plus, nous supposons que A et q satisfont (1.1.3) and (1.1.4) respectivement. Si f est
de type “combustion” satisfaisant (1.1.7), alors la vitesse unique c(e) qui correspond au
problème (1.1.11) est donnée par

c(e) = min
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y), (1.2.25)

= max
ϕ∈E

inf
(s,x,y)∈R×Ω

Rϕ(s, x, y). (1.2.26)

(voir Notations 1.2.10).
De plus, le min dans (1.2.25) et le max dans (1.2.26) sont atteints par, et seulement

par, la fonction φ(s, x, y) = u
(
s−x·e
c(e)

, x, y
)

et ses translations φ(s + τ, x, y) pour tout
τ ∈ R, où (c(e), u) est la solution de (1.1.11) qui se propage avec la vitesse c(e), dont
l’existence et l’unicité (u est unique à une translation en t) ont été montrés dans le
Théorème 1.1.4 de Berestycki et Hamel [2].

Théorème 1.2.12 (El Smaily [6]) Utilisons les notations 1.2.10 et supposons que la
nonlinéarité f est de type “ZFK” (satisfaisant (1.1.8)). Alors, la vitesse minimale de
propagation c∗Ω,A,q,f (e) dans la direction de −e est donnée par

c∗Ω,A,q,f (e) = min
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y). (1.2.27)

En particulière, le Théorème 3.1.9 s’applique lorseque la non linéarité f est de type
“KPP”.

Remarque 1.2.13 Dans le Théorème 1.2.11, le min et le max sont atteints par, et
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seulement par, le front pulsatoire φ(s, x, y) et ses translations φ(s + τ, x, y) pour tout
τ ∈ R. Dans le Théorème 3.1.9, le min est réalisé par le front pulsatoire φ∗(s, x, y) qui
se propage avec la vitesse c∗(e) et toute ses translations φ∗(s + τ, x, y). Actuellement,
si le front pulsatoire φ∗ est unique à translation près, alors φ∗ et ses translations en
s sont les seules minimiseurs dans la formule (1.2.27). Nous rappelons que l’unicité
de φ∗ était récemment montrée par Hamel et Roques [12] dans le cas “KPP”, mais elle
n’est pas encore montrée dans le cas “ZFK” général.

1.3 Problèmes ouverts, perspectives

Cette thèse propose une piste pour étudier plusieurs questions ouvertes concernant
les équations de réaction-advection-diffusion :

I. Quelques questions concernant les analyses asymptotiques des vitesses
de propagation dans un cadre hétérogène périodique :

1. Dans l’article El Smaily [5], nous avons étudié le comportement asymptotique de
M 7→ c∗

Ω,MA,Mγ q, f (e) lorsque M → +∞ sous l’hypothèse 0 ≤ γ ≤ 1/2. Nous avons
trouvé que l’advection n’a pas d’influence sur la limite, lorsque M → +∞, de

c∗Ω,MA,Mγ q,f (e)√
M

.

Il sera intéressant d’étudier le comportement asymptotique de

M 7→ c∗Ω,MA,Mγ q,f (e)

dans le cas où γ > 1/2 et f est du type “KPP.”

2. Nous notons que la formule variationnelle de Berestycki, Hamel et Nadirashvili
(1.1.12) a été l’outil essentiel pour étudier les asymptotiques de la vitesse minimale
par rapport aux coefficients de l’équation de réaction-advection-diffusion dans le cas
“KPP”. Cette formule n’est plus valable lorsque f est de type “ZFK”. Dans un cadre
hétérogène et périodique comme celui de la section 1.1, si la nonlinéarité f est de type
“ZFK” qui satisfait la condition

∀(x, y) ∈ Ω, f ′u(x, y, 0) = lim
u→0+

f(x, y, u)

u
> 0,

alors il existe deux nonlinéarités g et h de type “KPP” telles que g ≤ f ≤ h dans R×Ω.
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La formule min-max (1.2.27) donée par El Smaily [6] implique que

c∗Ω,A, q, g(e) ≤ c∗Ω,A,q,f (e) ≤ c∗Ω,A,q,h(e),

∀M > 0,∀γ ∈ R, c∗Ω,MA,Mγ q,g(e) ≤ c∗Ω,MA,Mγ q,f (e) ≤ c∗Ω,MA,Mγ q,h(e),

et
∀B > 0, c∗Ω,A,Bγ q,Bg(e) ≤ c∗Ω,A,Bγ q,Bf (e) ≤ c∗Ω,A,Bγ q,Bh(e).

Grâce à ces estimations pour les vitesses minimales et aux limites données par El Smaily
[5], il sera ensuite important d’étudier les comportements asymptotiques de la vitesse
minimale dans un cadre hétérogène périodique lorsque la nonlinéarité f est de type
“ZFK” satisfaisant f ′u(x, y, 0) > 0 dans Ω.

II. Problèmes d’optimisation : la formule min-max (1.2.27) de El Smaily [6]
implique que l’application Φ : e ∈ Sd−1 7→ c∗Ω,A,q,f (e), Sd−1 étant la sphère unitaire
de Rd, est continue lorsque f est de type “ZFK” et en particulier lorsque f est de
type “KPP”. En outre, dans le cas “KPP”, la formule (1.1.12) de Berestycki, Hamel,
Nadirashvili [3] implique aussi la continuité de l’application Φ. D’autre part, la formule
(1.2.25) de El Smaily [6] implique que l’application Ψ : e ∈ Sd−1 7→ c

Ω,A,q,f (e) est
continue lorsque f est de type “combustion”. Suite à la continuité de Φ et Ψ sur le
compact Sd−1 de RN , il sera intéressant de trouver les directions e ∈ Sd−1 où Φ et Ψ

atteignent leur maximum et minimum, et de les caractériser en fonction des coefficients
de diffusion, d’advection et de réaction, et en fonction de la géométrie du domaine Ω

lorseque Ω 6= RN .
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Pulsating travelling fronts:

Asymptotics and homogenization regimes
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Abstract. This paper is concerned with some nonlinear propagation phenomena
for reaction-advection-diffusion equations with Kolmogrov-Petrovsky-Piskunov (KPP)
type nonlinearities in general periodic domains or in infinite cylinders with oscillat-
ing boundaries. Having a variational formula for the minimal speed of propagation
involving eigenvalue problems ( proved in Berestycki, Hamel and Nadirashvili [3]), we
consider the minimal speed of propagation as a function of diffusion factors, reaction
factors and periodicity parameters. There we study the limits, the asymptotic behav-
iors and the variations of the considered functions with respect to these parameters.
Section 2.9 deals with homogenization problem as an application of the results in the
previous sections in order to find the limit of the minimal speed when the periodicity
cell is very small.
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Chapter 2. Pulsating fronts: Asymptotics and homogenization regimes

2.1 Introduction

This paper is a continuation in the study of the propagation phenomena of pulsating
travelling fronts in a periodic framework corresponding to reaction-advection-diffusion
equations with heterogenous KPP (Kolmogrov, Petrovsky and Piskunov) nonlineari-
ties. We will precisely describe the heterogenous-periodic setting, recall the extended
notion of pulsating travelling fronts, and then we move to announce the main results.
Let us first recall some of the basic features of the homogenous KPP equations.

Consider the Fisher-KPP equation:

ut −∆u = f(u) in RN . (2.1.1)

It was introduced in the celebrated papers of Fisher (1937) and in [19] originally moti-
vated by models in biology. Here, the main assumption is that f is, say, a C1 function
satisfying {

f(0) = f(1) = 0, f ′(1) < 0, f ′(0) > 0,

f > 0 in (0, 1), f < 0 in (1,+∞),
(2.1.2)

f(s) ≤ f ′(0)s ,∀s ∈ [0, 1]. (2.1.3)

As examples of such nonlinearities, we have: f(s) = s(1− s) and f(s) = s(1− s2).

The important feature in (2.1.1) is that this equation has a family of planar trav-
elling fronts. These are solutions of the form{

∀(t, x) ∈ R× RN , u(t, x) = φ(x · e+ ct),

φ(−∞) = 0 and φ(+∞) = 1,
(2.1.4)

where e ∈ RN is a fixed vector of unit norm which is the direction of propagation, and
c > 0 is the speed of the front. The function φ : R 7→ R satisfies{

−φ′′ + c φ = f(φ),

φ(−∞) = 0 and φ(+∞) = 1.
(2.1.5)

In the original paper of Kolmogorov, Petrovsky and Piskunov, it was proved that,
under the above assumptions, there is a threshold value c∗ = 2

√
f ′(0) > 0 for the

speed c. Namely, no fronts exist for c < c∗, and, for each c ≥ c∗, there is a unique
front of the type (2.1.4-2.1.5). Uniqueness is up to shift in space or time variables.

Later, the homogenous setting was extended to a general heterogenous periodic one.
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2.2. The periodic framework

The heterogenous character appeared both in the reaction-advection-diffusion equation
and in the underlying domain. The general form of these equations is{

ut = ∇ · (A(z)∇u) + q(z) · ∇u+ f(z, u), t ∈ R, z ∈ Ω,

ν · A ∇u(t, z) = 0, t ∈ R, z ∈ ∂Ω,
(2.1.6)

where ν(z) is the unit outward normal on ∂Ω at the point z.
The propagation phenomena attached with equation (3.1.1) has been widely studied

in many papers. Several properties of pulsating fronts in periodic media and their speed
of propagation were given in several papers ( Berestycki, Hamel [2], Berestycki, Hamel,
Nadirashvili [3], and Berestycki, Hamel, Roques [5, 6] and Xin [36]). In section 2.2, we
will recall the periodic framework and some known results which motivate our study.
The main results of this paper are presented in sections 2.3 to 2.6.

2.2 The periodic framework

2.2.1 Pulsating travelling fronts in periodic domains

In this section, we introduce the general setting with the precise assumptions. Con-
cerning the domain, let N ≥ 1 be the space dimension, and let d be an integer so
that 1 ≤ d ≤ N. For an element z = (x1, x2, · · · , xd, xd+1, · · · , xN) ∈ RN , we call
x = (x1, x2, · · · , xd) and y = (xd+1, · · · , xN) so that z = (x, y). Let L1, · · · , Ld be
d positive real numbers, and let Ω be a C3 nonempty connected open subset of RN

satisfying 
∃R ≥ 0 ;∀ (x, y) ∈ Ω, |y| ≤ R,

∀ (k1, · · · , kd) ∈ L1Z× · · · × LdZ, Ω = Ω +
d∑

k=1

kiei,
(2.2.1)

where (ei)1≤i≤N is the canonical basis of RN . In particular, since d ≥ 1, the set Ω is
unbounded.
In this periodic situation, we give the following definitions:

Definition 2.2.1 (Periodicity cell) The set C = { (x, y) ∈ Ω; x1 ∈ (0, L1), · · · , xd ∈
(0, Ld)} is called the periodicity cell of Ω.

Definition 2.2.2 (L-periodic flows ) A field w : Ω → RN is said to be L-periodic
with respect to x if w(x1 + k1, · · · , xd + kd , y) = w(x1, · · · , xd, y) almost everywhere in

23



Chapter 2. Pulsating fronts: Asymptotics and homogenization regimes

Ω, and for all k = (k1, · · · , kd) ∈
d∏
i=1

LiZ.

Before going further on, we point out that this framework includes several types
of simpler geometrical configurations. The case of the whole space RN corresponds to
d = N, where L1, . . . , LN are any positive numbers. The case of the whole space RN

with a periodic array of holes can also be considered. The case d = 1 corresponds to
domains which have only one unbounded dimension, namely infinite cylinders which
may be straight or have oscillating periodic boundaries, and which may or may not
have periodic holes. The case 2 ≤ d ≤ N − 1 corresponds to infinite slabs.

We are concerned with propagation phenomena for the reaction-advection-diffusion
equation (3.1.1) set in the periodic domain Ω. Such equations arise in combustion
models for flame propagation (see [27], [31] and [37]), as well as in models in biology
and for population dynamics of a species (see [14], [11], [20] and [28]). These equations
are used in modeling the propagation of a flame or of an epidemics in a periodic
heterogenous medium. The passive quantity u typically stands for the temperature
or a concentration which diffuses in a periodic excitable medium. However, in some
sections we will ignore the advection and deal only with reaction-diffusion equations.

Let us now detail the assumptions concerning the coefficients in (3.1.1). First, the
diffusion matrix A(x, y) = (Aij(x, y))1≤i,j≤N is a symmetric C2,δ( Ω ) (with δ > 0)
matrix field satisfying

A is L-periodic with respect to x,

∃ 0 < α1 ≤ α2,∀(x, y) ∈ Ω,∀ ξ ∈ RN ,

α1|ξ|2 ≤
∑

1≤i,j≤N

Aij(x, y)ξiξj ≤ α2|ξ|2.
(2.2.2)

The boundary condition ν·A∇u(x, y) = 0 stands for
∑

1≤ i,j≤N

νi(x, y)Aij(x, y)∂xju(t, x, y),

and ν stands for the unit outward normal on ∂Ω. We note that when A is the iden-
tity matrix, then this boundary condition reduces to the usual Neumann condition
∂νu = 0.

The underlying advection q(x, y) = (q1(x, y), · · · , qN(x, y)) is a C1,δ(Ω) (with δ > 0)

24



2.2. The periodic framework

vector field satisfying

q is L− periodic with respect to x,

∇ · q = 0 in Ω ,

q · ν = 0 on ∂Ω ,

∀ 1 ≤ i ≤ d,

∫
C

qi dx dy = 0.

(2.2.3)

Concerning the nonlinearity, let f = f(x, y, u) be a nonnegative function defined
in Ω × [0, 1], such that

f ≥ 0, f is L-periodic with respect to x, and of class C1, δ(Ω × [0, 1]),

∀ (x, y) ∈ Ω, f(x, y, 0) = f(x, y, 1) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1− ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′),

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,

∀ (x, y) ∈ Ω, f ′u(x, y, 0) = lim
u→ 0+

f(x, y, u)

u
> 0,

(2.2.4)

with the additional assumption

∀ (x, y, s) ∈ Ω× (0, 1), 0 < f(x, y, s) ≤ f ′u(x, y, 0)× s. (2.2.5)

We denote by ζ(x, y) := f ′u(x, y, 0), for each (x, y) ∈ Ω.

The set of such nonlinearities contains two particular types of functions:

— The homogeneous (KPP) type: f(x, y, u) = g(u), where g is a C1,δ function that
satisfies:
g(0) = g(1) = 0, g > 0 on (0, 1), g′(0) > 0, g′(1) < 0 and 0 < g(s) ≤ g′(0)s in

(0, 1).

— Another type of such nonlinearities consists of functions f(x, y, u) = h(x, y).f̃(u),

such that f̃ is of the previous type, while h lies in C1,δ(Ω), L -periodic with re-
spect to x, and positive in Ω.

Having this periodic framework, the notions of travelling fronts and propagation
were extended, in [2], [3], [11], [26] [28], [29], and [34] as follows:

Definition 2.2.3 Let e = (e1, · · · , ed) be an arbitrarily given vector in Rd. A function
u = u(t, x, y) is called a pulsating travelling front propagating in the direction of e with
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Chapter 2. Pulsating fronts: Asymptotics and homogenization regimes

an effective speed c 6= 0, if u is a classical solution of

ut = ∇ · (A(x, y)∇u) + q(x, y) · ∇u+ f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,

∀ k ∈
d∏
i=1

LiZ, ∀ (t, x, y) ∈ R × Ω, u(t− k · e
c
, x, y) = u(t, x+ k, y),

lim
x·e→−∞

u(t, x, y) = 0, and lim
x·e→+∞

u(t, x, y) = 1,

0 ≤ u ≤ 1,

(2.2.6)

where the above limits hold locally in t and uniformly in y and in the directions of Rd

which are orthogonal to e .

2.2.2 Some important known results concerning the propaga-
tion phenomena in a periodic framework

Under the assumptions (3.1.2), (3.1.3), (3.1.4), (2.2.4) and (4.1.5) set in the previous
subsection, Berestycki and Hamel [2] proved that: having a pre-fixed unit vector e ∈ Rd,
there exists c∗(e) > 0 such that pulsating travelling fronts propagating in the direction
e (i.e satisfying (4.1.8)) with a speed of propagation c exist if and only if c ≥ c∗(e);

moreover, the pulsating fronts (within a speed c ≥ c∗(e)) are increasing in the time t.
The value c∗(e) = c∗Ω,A,q,f (e) is called the minimal speed of propagation in the direction
of e. Other nonlinearities have been considered in the cases of the whole space RN or
in the general periodic framework (see [2], [28], [29], [32], [33], [34], [35]).

Having the threshold value c∗Ω,A,q,f (e), our paper aims to study the limits, the asymp-
totic behaviors, and the variations of some parametric quantities. These parametric
quantities involve the parametric speeds of propagation of different reaction-advection-
diffusion problems within a diffusion factor ε > 0, a reaction factor B > 0, or a
periodicity parameter L. Thus, it is important to have a variational characterization
which shows the dependance of the minimal speed of propagation on the coefficients
A, q and f and on the geometry of the domain Ω. In this context, Berestycki, Hamel,
and Nadirashvili [3] gave such a formulation for c∗Ω,A,q,f (e) involving elliptic eigenvalue
problems. We recall this variational characterization in the following theorem:

Theorem 2.2.4 (Berestycki, Hamel, and Nadirashvili [3]) Let e be a fixed unit
vector in Rd. Let ẽ = (e, 0, . . . , 0) ∈ RN . Assume that Ω, A and f satisfy (3.1.2),(3.1.3),
(2.2.4), and (4.1.5). The minimal speed c∗(e) = c∗Ω,A,q,f (e) of pulsating fronts solving
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2.2. The periodic framework

(4.1.8) and propagating in the direction of e is given by

c∗(e) = c∗Ω,A,q,f (e) = min
λ>0

k(λ)

λ
, (2.2.7)

where k(λ) = kΩ,e,A,q,ζ(λ) is the principal eigenvalue of the operator LΩ,e,A,q,ζ,λ which is
defined by

LΩ,e,A,q,ζ,λψ := ∇ · (A∇ψ) − 2λẽ · A∇ψ + q · ∇ψ
+[λ2ẽAẽ− λ∇ · (Aẽ)− λq · ẽ+ ζ]ψ

(2.2.8)

acting on the set

E = { ψ ∈ C2(Ω), ψ is L-periodic with respect to x and ν · A∇ψ = λ(νAẽψ) on ∂Ω } .

The proof of formula (3.1.18) is based on methods developed in [2], [7] and [9].
These are techniques of sub and super-solutions, regularizing and approximations in
bounded domains.

We note that in formula (3.1.18), the value of the minimal speed c∗(e) is given
in terms of the direction e, the domain Ω, and the coefficients A, q and f

′
u(., ., 0).

Moreover, it is important to notice that the dependence of c∗(e) on the nonlinearity f
is only through the derivative of f with respect to u at u = 0.

Before going further on, let us mention that formula (3.1.18) extends some earlier
results about front propagation. When Ω = RN , A = Id and f = f(u) (with f(u) ≤
f
′
(0)u in [0, 1]), formula (3.1.18) then reduces to the well-known KPP formula c∗(e) =

2
√
f ′(0). That is the value of the minimal speed of propagation of planar fronts for

the homogenous reaction-diffusion equation: ut −∆u = f(u) in RN . 2

The above variational characterization of the minimal speed of propagation of pul-
sating fronts in general periodic excitable media will play the main role in studying
the dependence of the minimal speed c∗(e) = c∗Ω,A,q,f (e) on the coefficients of reaction,
diffusion, advection and on the geometry of the domain. In this context, we have:

Theorem 2.2.5 (Berestycki, Hamel, Nadirashvili [3]) Under the assumptions (3.1.2),
(3.1.3), and (3.1.4) on Ω, A, and q, let f = f(x, y, u) [respectively g = g(x, y, u)] be

2. In fact, the uniqueness, up to multiplication by a non-zero real number, of the first eigenvalue
function of LRN ,e,Id,f ′ (0),λψ = k(λ)ψ together with this particular situation, yield that the principal
eigenfunction ψ is constant and k(λ) = λ2 + f

′
(0) for all λ > 0. Therefore by (3.1.18), we have

c∗(e) = min
λ>0

(
λ+

f
′
(0)

λ

)
= 2

√
f ′(0).
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a nonnegative nonlinearity satisfying (2.2.4) and (4.1.5). Let e be a fixed unit vector
in Rd, where 1 ≤ d ≤ N,

a) If f ′u(x, y, 0) ≤ g
′
u(x, y, 0) for all (x, y) ∈ Ω, then

c∗Ω,A,q,f (e) ≤ c∗Ω,A,q,g(e).

Moreover if f
′
u(x, y, 0) ≤ , 6≡ g

′
u(x, y, 0) in Ω, then c∗Ω,A,q,f (e) < c∗Ω,A,q,g(e).

b) The map B 7→ c∗Ω,A,q,Bf (e) is increasing in B > 0 and

lim sup
B→+∞

c∗Ω,A,q,Bf (e)√
B

< +∞.

Furthermore, if Ω = RN or if νAẽ ≡ 0 on ∂Ω, then lim inf
B→+∞

c∗Ω,A,q,Bf (e)√
B

> 0.

c)

c∗Ω,A,q,f (e) ≤ ||(q.ẽ)−||∞ + 2
√

max
(x,y)∈Ω

ζ(x, y)
√

max
(x,y)∈Ω

ẽA(x, y)ẽ, (2.2.9)

where ||(q.ẽ)−||∞ = max
(x,y)∈Ω

(q(x, y).ẽ)− and s− = max (−s, 0) for each s ∈ R. Fur-

thermore, the equality holds in (2.2.9) if and only if ẽAẽ and ζ are constant, q.ẽ ≡
∇ . (Aẽ) ≡ 0 in Ω and ν.Aẽ = 0 on ∂Ω (in the case when ∂Ω 6= ∅).

d) Assume furthermore that f = f(u) and q ≡ 0 in Ω, then the map β 7→ c∗Ω,βA,0,f (e)

is increasing in β > 0.

As a corollary of (2.2.9), we see that lim sup
M→+∞

c∗Ω,MA,q,f (e)√
M

≤ C where C is a positive

constant. Furthermore, part d) implies that a larger diffusion speeds up the propagation
in the absence of the advection field.

We mention that the existence of pulsating travelling fronts in space-time periodic
media was proved in Nolen, Xin [23, 24], Nolen, Rudd, Xin [25] and recently in Nadin
[21, 22]. In [22], Nadin characterized the minimal speed of propagation and he studied
the influence of the diffusion, the amplitude of the reaction term and the drift on the
characterized speed.

After reviewing some results in the study of the KPP propagation phenomena in
a periodic framework, we pass now to announce new results concerning the limiting
behavior of the minimal speed of propagation within a small (resp. large) diffusion and
reaction coefficients (in some particular situations of the general periodic framework)
and we will study the minimal speed as a function of the period of the coefficients in
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the KPP reaction-diffusion-advection (or reaction-diffusion) equation in the case where
Ω = RN . The proofs will be shown in details in section 2.8. The announced results
will be applied to find the homogenization limit of the minimal speeds of propagation.
We believe that this limit might help to find the homogenized equation in the “KPP”
periodic framework (see section 2.9 for more details).

2.3 The minimal speed within small diffusion factors
or within large period coefficients

In this section, our problem is a reaction-diffusion equation with absence of advec-
tion terms:{

ut = β∇ · (A(x, y)∇u) + f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,
(2.3.1)

where β > 0.

We mention that (2.3.1) is a reaction-diffusion problem within a diffusion matrix
βA. Let e be a unit direction in Rd. Under the assumptions (3.1.2), (3.1.3), (2.2.4) and
(4.1.5), for each β > 0, there corresponds a minimal speed of propagation c∗Ω,βA,0,f (e)
so that a pulsating front with a speed c and satisfying (2.3.1) exists if and only if
c ≥ c∗Ω,βA,0,f (e).

Referring to part c) of Theorem 2.2.5, one gets 0 < c∗Ω,βA,0,f (e) ≤ 2
√
β
√
M0M,

for any β > 0, where M0 = max
(x,y)∈Ω

ζ(x, y) and M = max
(x,y)∈Ω

ẽA(x, y)ẽ .

Consequently, there exists C > 0 and independent of β such that

∀β > 0, 0 <
c∗Ω,βA,0,f (e)√

β
≤ C. (2.3.2)

The inequality (2.3.2) leads us to investigate the limits of
c∗Ω,βA,0,f (e)√

β
as β → 0 and

as β → +∞. The following theorem gives the precise limit when the diffusion factor
tends to zero. However, it will not be announced in the most general periodic setting.
We will describe the situation before the statement of the theorem:

The domain will be in the form Ω = R×ω ⊆ RN , where ω ⊆ Rd×RN−d−1 (d ≥ 0).
If d = 0, then ω is a C3 connected, open bounded subset of RN−1. While, in the case
where 1 ≤ d ≤ N−1, ω is a (L1, . . . , Ld)-periodic open domain of RN−1 which satisfies
(3.1.2); and hence, Ω is a (l, L1, . . . , Ld)−periodic subset of RN that satisfies (3.1.2)
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Chapter 2. Pulsating fronts: Asymptotics and homogenization regimes

with l > 0 and arbitrary. An element of Ω = R × ω will be represented as z = (x, y)

where x ∈ R and y ∈ ω ⊆ Rd × RN−1−d.

The nonlinearity f = f(x, y, u), in this section, is a KPP nonlinearity defined on
Ω× [0, 1] that satisfies

f ≥ 0, and of class C1, δ(R× ω × [0, 1]),

f is (l, L1, . . . , Ld)-periodic with respect to (x, y1, . . . , yd), when d ≥ 1,

f is l-periodic in x, when d = 0,

∀ (x, y) ∈ Ω = R× ω, f(x, y, 0) = f(x, y, 1) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1− ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′),

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,

(2.3.3)

together with the assumptions
f ′u(x, y, 0) depends only on y; we denote by ζ(y) = f ′u(x, y, 0), ∀(x, y) ∈ Ω.

∀ (x, y) ∈ Ω = R× ω, f ′u(x, y, 0) = ζ(y) > 0,

∀ (x, y, s) ∈ Ω × (0, 1), 0 < f(x, y, s) ≤ ζ(y) s.

(2.3.4)

Notice that f ′u(x, y, u) is assumed to depend only on y, but f(x, y, u) may depend on
x.

Lastly, concerning the diffusion matrix, A(x, y) = A(y) = (Aij(y))1≤i,j≤N is a
C2,δ( Ω ) (with δ > 0) symmetric matrix field whose entries are depending only on
y, and satisfying

A is (L1, . . . , Ld)-periodic with respect to (y1, . . . , yd),

∃ 0 < α1 ≤ α2, ∀ y ∈ ω,∀ ξ ∈ RN ,
α1|ξ|2 ≤

∑
Aij(y)ξiξj ≤ α2|ξ|2.

(2.3.5)

Theorem 2.3.1 Let e = (1, 0, . . . , 0) ∈ RN and ε > 0. Let Ω = R × ω ⊆ RN satisfy
the form described in the previous page. Under the assumptions (2.3.3), (2.3.4), and
(2.3.5), consider the reaction-diffusion equation{

ut(t, x, y) = ε∇ · (A(y)∇u)(t, x, y) + f(x, y, u), for (t, x, y) ∈ R× Ω,

ν · A∇u = 0 on R× R× ∂ω.
(2.3.6)
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2.3. The cases small diffusion factors or large period coefficients

Assume, furthermore, that A and f satisfy one of the following two alternatives:{
∃α > 0, ∀y ∈ ω, A(y)e = αe,

f
′
u(x, y, 0) = ζ(y), for all (x, y) ∈ Ω,

(2.3.7)

or 
f
′
u(x, y, 0) = ζ is constant,

∀y ∈ ω, A(y)e = α(y)e, where

y 7→ α(y) is a positive, (L1, . . . , Ld)−periodic function over ω.

(2.3.8)

Then,

lim
ε→0+

c∗Ω,εA,0,f (e)√
ε

= 2
√

max
ω

ζ
√

max
ω

eAe. (2.3.9)

Before going further on, we mention that the family of domains for which The-
orem 2.3.1 holds is wide. An infinite cylinder R×BRN−1(y0, R) (where R > 0, and
BRN−1(y0, R) is the Euclidian ball of center y0 and radius R) is an archetype of such do-
mains. In these cylinders, ω = BRN−1(y0, R), l is any positive real number, and d = 0.

The whole space RN is another archetype of the domain Ω where d = N−1, ω = RN−1,

and {l, L1, . . . , Ld} is any family of positive real numbers.

Remark 2.3.2 In Theorem 2.3.1, the domain Ω = R× ω is invariant in the direction
of e = (1, 0 . . . , 0) which is parallel to Ae ( in both cases (2.3.7) and (2.3.8)). Also, the
assumption that the entries of A do not depend on x, yields that ∇.(Ae) ≡ 0 over Ω.

On the other hand, it is easy to find a diffusion matrix A and a nonlinearity f which
satisfy, together, the assumptions of Theorem 2.3.1 while one of eAe(y) and ζ(y) is
not constant. Referring to part c) of Theorem 2.2.5, one obtains:

∀ε > 0, 0 <
c∗Ω,εA,0,f (e)√

ε
� 2

√
max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

However, Theorem 2.3.1 implies that

lim
ε→0+

c∗Ω,εA,0,f (e)√
ε

= 2
√

max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

On the other hand, if Ω = R × ω as in Theorem 2.3.1, A = Id and f = f(u),

Theorem 2.2.5 yields that c∗
Ω,εId,0,f

(e) = 2
√
ε
√
f ′(0), for all ε > 0. �

In the same context, one can also find the limit when the diffusion factor goes to
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Chapter 2. Pulsating fronts: Asymptotics and homogenization regimes

zero, but in the presence of an advection field in the form of shear flows:

Theorem 2.3.3 Assume that e = (1, 0, · · · , 0) ∈ RN , the domain Ω = R × ω has
the same form as in Theorem 2.3.1, and the coefficients f and A satisfy (2.3.3-2.3.4)
and (2.3.5) respectively. Assume, furthermore, that for all y ∈ ω, there exists α(y)

positive so that A(y)e = α(y)e in ω. Consider, in addition, an advective shear flow
q = (q1(y), 0, . . . , 0) (y ∈ ω) which is (L1, · · · , Ld)−periodic with respect to y. Assume
that ε is a positive parameter and consider the parametric reaction-advection-diffusion
problem{

ut = ε∇ · (A(y)∇u) + q1(y) ∂xu(t, x, y) + f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,
(2.3.10)

where q 6≡ 0 over R× ω and q has a zero average. Then,

lim
ε→0+

c∗Ω,εA,q,f (e) = max
y∈ω

(− q1(y)) = max
ω

(− q.e). (2.3.11)

Moreover, in the same setting together with the additional assumptions: eAe and ζ are both constant over ω,
one has

lim
ε→0+

c∗
Ω,εA,

√
ε q,f

(e)
√
ε

= max
ω

(−q(y).e) + 2
√
α
√
ζ0, (2.3.12)

where ζ(y) = ζ0 and eA(y)e = α for all y ∈ ω.

The situation in this result is more general than that considered in part b) of
Corollary 4.5 in [4]. In details, the coefficients A and f can be both non-constant.
Meanwhile, in the result of [4], the coefficients considered were assumed to satisfy the
alternative (2.3.7).

After having the exact value of lim
ε→0+

c∗Ω,εA,0,f (e)√
ε

, we move now to investigate the

limit of the minimal speed of propagation, considered as a function of the period of
the coefficients of the reaction-diffusion equation set in the whole space RN , when the
periodicity parameter tends to +∞. By making some change in variables, we will find
a link between this problem and Theorem 2.3.1:

Theorem 2.3.4 Let e = (1, 0, . . . , 0) ∈ RN . An element z ∈ RN is represented as
z = (x, y) ∈ R × RN−1. Assume that f = f(x, y, u) and A = A(y) satisfy (2.3.3),
(2.3.4) and (2.3.5) with ω = RN−1, d = N − 1, and l = L1 = . . . = LN−1 = 1. (That
is, the domain and the coefficients of the equation are (1, 1, . . . , 1) periodic with respect
to y). Assume furthermore, that A and f satisfy either (2.3.7) or (2.3.8). For each
L > 0, and (x, y) ∈ RN , let A

L
(y) = A(

y

L
) and f

L
(x, y, u) = f(

x

L
,
y

L
, u). Consider the
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2.3. The cases small diffusion factors or large period coefficients

reaction-diffusion problem

ut(t, x, y) = ∇ · (A
L
∇u)(t, x, y) + f

L
(x, y, u), (t, x, y) ∈ R× RN

= ∇ · (A(
y

L
)∇u)(t, x, y) + f(

x

L
,
y

L
, u), (t, x, y) ∈ R× RN ,

(2.3.13)

whose coefficients are (L, . . . , L) periodic with respect to (x, y) ∈ RN . Then,

lim
L→+∞

c∗RN ,A
L
, 0, f

L

(e) = 2
√

max
y ∈RN−1

ζ(y)
√

max
y ∈RN−1

e.Ae(y). (2.3.14)

The above theorem gives the limit of the minimal speed of propagation in the
direction of e = (1, 0, · · · , 0) as the periodicity parameter L → +∞. The domain is
the whole space RN which is (L, · · · , L)−periodic whatever the positive number L.
However, one can find

lim
L→+∞

c∗RN ,A
L
, Lq

L
, f

L

(e) and lim
L→+∞

c∗RN ,A
L
, q

L
, f

L

(e)

whenever q is a shear flow advection. Namely, in the same manner that Theorem 2.3.1
implies Theorem 2.3.4, one can prove that Theorem 2.3.3 implies

Theorem 2.3.5 Let e = (1, 0, . . . , 0) ∈ RN . Assume that f = f(x, y, u) and A = A(y)

satisfy (2.3.3), (2.3.4) and (2.3.5) with ω = RN−1, d = N − 1, and l = L1 = . . . =

LN−1 = 1. (That is, the domain and the coefficients of the equation are (1, 1, . . . , 1)

periodic with respect to y in RN−1). Assume, furthermore, that for all y ∈ RN−1, there
exists α(y) positive so that A(y)e = α(y)e in RN−1. Let q = (q1(y), 0, . . . , 0) for all
y ∈ RN−1 such that q1 6≡ 0 over RN−1, q is (1, · · · , 1)−periodic with respect to y and
q1 has a zero average. Then,

lim
L→+∞

c∗RN ,A
L
, Lq

L
, f

L

(e) = max
y∈RN−1

(− q1(y)) = max
y∈RN−1

(− q(y).e). (2.3.15)

Moreover, if eAe and ζ are both constant over RN−1, then

lim
L→+∞

c∗RN ,A
L
, q

L
, f

L

(e) = max
y∈RN−1

(− q(y).e) + 2
√
α
√
ζ0, (2.3.16)

where ζ0 = ζ(y) and α = eA(y)e for all y ∈ RN−1.

In the proof of Theorem 2.3.3 (which implies Theorem 2.3.5), the assumption that
the advection q is in the form of shear flows plays an important role in reducing the
elliptic equation involved by the variational formula (2.8.13) below. Namely, since q =
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Chapter 2. Pulsating fronts: Asymptotics and homogenization regimes

(q1(y), 0, · · · , 0) and since e = (1, 0, · · · , 0), then the terms q(x, y) ·∇x,yψ and q(x, y) · e
(in the general elliptic equation) become equal to q1(y)∂xψ and q1(y) respectively.
As a consequence, and due the uniqueness of the principal eigenfunction ψ up to
multiplication by a constant, we are able to choose ψ independent of x, and hence,
obtain a symmetric elliptic operator (without drift) whose principal eigenvalue was
given by the variational formula (2.8.15) below (see section 2.8 for more details).

Remark 2.3.6 After the above explanations, we find that the techniques used to prove
Theorem 2.3.3 which implies 2.3.5, will no longer work in the presence a general peri-
odic advection field satisfying (3.1.4).

Concerning the influence of advection, we mention that the limit of
c∗Ω,A,Bq,f (e)

B
as

B → +∞ (in the general periodic setting) is not yet given explicitly as a function of
the direction e and the coefficients A, q and f. For more details one can see Theorem
4.1 in [4]. However, the problem of front propagation in an infinite cylinder with an
underlying shear flow was widely studied in Berestycki [1], Berestycki and Nirenberg
[8]. In the case of strong advection, assume that Ω = R × ω, where ω is a bounded
smooth subset of RN−1, q = (q1(y), 0, · · · , 0), y ∈ ω, and f = f(u) is a (KPP)
nonlinearity. It was proved, in Heinze [16], that

lim
B→+∞

c∗Ω,A,Bq,f (e)

B
= γ, (2.3.17)

where
γ = sup

ψ∈D

∫
ω

q1(y)ψ2 dy,

D =

{
ψ ∈ H1(w),

∫
ω

|∇ψ|2 dy ≤ f
′
(0), and

∫
ω

ψ2 dy = 1

}
.

2.4 The minimal speed within large diffusion factors
or within small period coefficients

After having the limit of c∗Ω,εA,0,f (e)/
√
ε as ε→ 0+, and after knowing that this limit

depends on max
y ∈w

ζ(y) and max
y ∈w

eAe(y), we investigate now the limit of c∗Ω,MA, q,f (e)/
√
M

as the diffusion factorM tends to +∞, and we try to answer this question in a situation
which is more general than that we considered in the previous section (in the case where
the diffusion factor was going to 0+). That is in the presence of an advection field and
in a domain Ω which satisfies (3.1.2) and which may take more forms other than those
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2.4. The cases of large diffusion factors or small period coefficients

of section 2.3. We will find that in the case of large diffusion, the limit will depend on

−
∫
C

ζ(x, y)dx dy :=
1

|C|

∫
C

ζ(x, y)dx dy and −
∫
C

ẽAẽ(x, y)dx dy :=
1

|C|

∫
C

ẽAẽ(x, y)dx dy,

where C denotes the periodicity cell of the domain Ω.

Theorem 2.4.1 Under the assumptions (3.1.2) for Ω, (3.1.4) for the advection q, (2.2.4)
and (4.1.5) for the nonlinearity f = f(x, y, u), let e be any unit direction of Rd. Assume
that the diffusion matrix A = A(x, y) satisfies (3.1.3) together with ∇ · Aẽ ≡ 0 over
Ω, and ν · Aẽ = 0 over ∂Ω. For each M > 0 and 0 ≤ γ ≤ 1/2, consider the following
reaction-advection-diffusion equation{

ut = M ∇ · (A(x, y)∇u) + M γ q(x, y) · ∇u + f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

Then

lim
M→+∞

c∗
Ω,MA,Mγ q, f (e)

√
M

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy,

where C is the periodicity cell of Ω.

Remarks 2.4.2

— The setting in Theorem 2.4.1 is more general than that in Theorem 2.3.1, where:
Ω = R × ω, ẽ = (1, 0, . . . , 0), and Aẽ = α(y)ẽ. Under the assumptions of
Theorem 2.3.1, the domain Ω is invariant in the direction of Aẽ, which is
that of ẽ. Consequently, if ν denotes the outward normal on ∂Ω = R × ∂ω,

one gets ν · Aẽ = α(y) ν · ẽ = 0 over ∂Ω, while ∇ · (Aẽ) =
∂

∂x
α(y) = 0 over Ω.

Moreover, in Theorem 2.3.1, we have only reaction and diffusion terms. That is
q ≡ 0. Therefore, considering the setting of Theorem 2.3.1, and taking βA as a

parametric diffusion matrix, one consequently knows the limits of
c∗

Ω,βA,0,f
(e)

√
β

as β → 0+ (Theorem 2.3.1) and as β → +∞ (Theorem 2.4.1).
— The other observation in Theorem 2.4.1 is that the limit does not depend on the

advection field q. This may play an important role in drawing counterexamples
to answer many different questions. For example, the variation of the minimal
speed of propagation with respect to the diffusion factor and with respect to
diffusion matrices which are symmetric positive definite.

— Another important feature, in Theorem 2.4.1, is that the order of M in the

denominator of the ratio
c∗

Ω,MA,Mγ q, f (e)
√
M

is equal to 1/2. It is independent

of γ. Consequently, the case where the advection is null and there is only
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a reaction-diffusion equation follows, in particular, from the previous theorem.
That is

lim
M→+∞

c∗
Ω,MA,0,f

(e)
√
M

= 2

√
−
∫

C

ẽAẽ(x, y)dx dy

√
−
∫

C

ζ(x, y)dx dy.

— The previous point leads us to conclude that the presence of an advection
with a factor Mγ, where 0 ≤ γ ≤ 1/2, will have no more effect on the ratio
c∗

Ω,MA,Mγ q, f (e)
√
M

as soon as the diffusion factor M gets very large.

As far as the limit of the minimal speed of propagation within small periodic co-
efficients in the reaction-diffusion equation is concerned, the following theorem, which
mainly depends on Theorem 2.4.1, treats this problem:

Theorem 2.4.3 Let Ω = RN . Assume that A = A(x, y), q = q(x, y) and f = f(x, y, u)

are (1, . . . , 1)−periodic with respect to (x, y) ∈ RN , and that they satisfy (3.1.3), (3.1.4),
(2.2.4),and (4.1.5) with L1 = . . . = LN = 1. Let e be any unit direction of RN , such
that ∇·Aẽ ≡ 0 over RN . For each L > 0, let A

L
(x, y) = A(

x

L
,
y

L
), q

L
(x, y) = q(

x

L
,
y

L
),

and f
L
(x, y, u) = f(

x

L
,
y

L
, u), where (x, y) ∈ RN . Consider the problem

ut(t, x, y) = ∇ · (A
L
∇u)(t, x, y) + q

L
· ∇u(t, x, y) + f

L
(x, y, u), (t, x, y) ∈ R× RN ,

= ∇ · (A(
x

L
,
y

L
)∇u)(t, x, y) + q(

x

L
,
y

L
) · ∇u(t, x, y) + f(

x

L
,
y

L
, u),

(2.4.1)

whose coefficients are (L, . . . , L) periodic with respect to (x, y) ∈ RN . Then,

lim
L→ 0+

c∗RN ,A
L
, q

L
, f

L

(e) = 2

√
−
∫

C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy,

where, in this setting, C = [0, 1]× · · · × [0, 1] ⊂ RN .

The above result gives the limit in any space dimension. It depends on the as-
sumption ∇ · (Aẽ) ≡ 0 in RN . However, if one takes N = 1, and denotes the diffusion
coefficient by a = a(x), x ∈ R, then the previous result holds under the assumptions
that a satisfies (3.1.3) and da/dx ≡ 0 in R. In other words, it holds when a is a posi-
tive constant. Thus, it is be interesting to mention that, in the one-dimensional case,
the above limit was given in [13] and [17] within a general diffusion coefficient (which
may be not constant over R). In details, assume that f = f(x, u) = (ζ(x) − u)u is a
1-periodic (KPP) nonlinearity satisfying (2.2.4) with (4.1.5), and R 3 x 7→ a(x) is a
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2.5. The minimal speed within small or large reaction coefficients

1−periodic function which satisfies 0 < α1 ≤ a(x) ≤ α2, for all x ∈ R, where α1 and α2

are two positive constants. For each L > 0, consider the reaction-diffusion equation

∂t u(t, x) =
∂

∂ x

(
a(
x

L
)
∂ u

∂x

)
(t, x) +

[
ζ(
x

L
)− u(t, x)

]
u(t, x) for (t, x) ∈ R× R.

(2.4.2)
It was derived in [13] and, formally, in [17] that

lim
L→ 0+

c∗R, a
L
, 0, f

L

(e) = 2

√
< a >

H
.

∫ 1

0

ζ(x), (2.4.3)

where < a >
H
denotes the harmonic mean of the map x 7→ a(x) over [0, 1].

2.5 The minimal speed within small or large reaction
coefficients

In this section, the parameter of the reaction-advection-diffusion problem is the
coefficient B multiplied by the nonlinearity f. In fact, it follows from Theorem 1.6
in Berestycki, Hamel and Nadirashvili [3] (recalled via Theorem 2.2.5 in the present
paper) that the map B 7→ c∗Ω,A,q,Bf (e)/

√
B remains, with the assumption ν.Aẽ = 0 on

∂Ω, bounded by two positive constants as B gets very large. Therefore, it is interesting
to find the limit of c∗Ω,A,q,Bf (e)/

√
B as B → +∞ even in some particular situations.

Moreover, it is important to find the limit of the same quantity as B → 0+. We start
with the case where B → +∞ and then we move to that where B → 0+.

Theorem 2.5.1 Let e = (1, 0, . . . , 0) ∈ RN and B > 0. Assume that Ω = R × ω ⊆
RN , A, and f satisfy the same assumptions of Theorem 2.3.1. That is, f and A satisfy
(2.3.3), (2.3.4), and (2.3.5), and one of the two alternatives (2.3.7)-(2.3.8). Consider
the reaction-diffusion equation{

ut(t, x, y) = ∇ · (A(y)∇u)(t, x, y) + B f(x, y, u), for (t, x, y) ∈ R× Ω,
ν · A∇u = 0 on R× R× ∂ω.

(2.5.1)

Then,

lim
B→+∞

c∗Ω,A,0,Bf (e)√
B

= 2
√

max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y). (2.5.2)

We mention that one can find the coefficients A, and f and the domain Ω of the
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problem (2.5.1) satisfying all the assumptions of Theorem 2.5.1, which are the same of
Theorem 2.3.1, including one of the alternatives (2.3.7)-(2.3.8) while one of ζ and eAe
is not constant. Owing to Theorem 1.10 in [3], it follows that

∀B > 0, c∗Ω,A,0,Bf (e) � 2
√
B
√

max
y∈ω

ζ(y)
√

max
y∈ω

eAe(y),

which is equivalent to saying that

c∗Ω,A,0,Bf (e)√
B

� 2
√

max
y ∈ω

ζ(y)
√

max
y ∈ω

eAe(y).

Therefore, there are heterogeneous settings in which the result found in Theorem
2.5.1 does not follow trivially.

We move now to study the limit when the reaction factor B tends to 0+. However,
the situation will be more general than that in Theorem 2.5.1 because it will con-
sider reaction-advection-diffusion equations rather than considering reaction-diffusion
equations only:

Theorem 2.5.2 Under the assumptions (3.1.2) for Ω, (3.1.4) for the advection q, (2.2.4)
and (4.1.5) for the nonlinearity f = f(x, y, u), let e be any unit direction of Rd. As-
sume that the diffusion matrix A = A(x, y) satisfies (3.1.3) together with ∇ · Aẽ ≡ 0

over Ω, and ν · Aẽ = 0 over ∂Ω. For each B > 0 and γ ≥ 1/2, consider the following
reaction-advection-diffusion equation{

ut = ∇ · (A(x, y)∇u) + B γ q(x, y) · ∇u + B f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

Then

lim
B→0+

c∗
Ω,A,Bγ q, Bf (e)

√
B

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy,

where C is the periodicity cell of Ω.

Having the above result one can mark a sample of notes:
The order of B in the denominator of the ratio c∗

Ω,A,Bγ q, Bf (e)/
√
B is indepen-

dent of γ (it is equal to 1/2). Thus, whenever the advection is null, one gets

lim
B→0+

c∗Ω,A,0,Bf (e)√
B

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy.

Therefore, one concludes that the presence of an advection with a factor Bγ, where
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2.6. Variations of the minimal speed of propagation

γ ≥ 1/2, will have no more effect on the limit of the ratio c∗
Ω,A,Bγq, Bf (e)/

√
B as the

reaction factor B gets very small.
On the other hand, it is easy to check that the assumptions in Theorem 2.5.2 are

more general than those in Theorem 2.5.1. Consequently, once we are in the more
strict setting, which is that of Theorem 2.5.1, we are able to know both limits of
c∗Ω,A,0,Bf (e)/

√
B as B → +∞ and as B → 0+.

2.6 Variations of the minimal speed with respect to
diffusion and reaction factors and with respect to
periodicity parameters

After having studied the limits and the asymptotic behaviors of the of the functions
ε 7→ c∗Ω,εA,0,f (e)/

√
ε, M 7→ c∗

Ω,MA,Mγ q, f (e)/
√
M (for very large M and for 0 ≤ γ ≤

1/2), B 7→ c∗
Ω,A,Bγ q, Bf (e)/

√
B (γ ≥ 1/2) and L 7→ c∗RN ,AL, qL ,fL

(e), where L is a
periodicity parameter, we move now to investigate the variations of these functions with
respect to the diffusion and reaction factors and with respect the periodicity parameter
L. The present section will be devoted to discuss and answer these questions.

We sketch first the form of the domain. Ω ⊆ RN is assumed to be in the form R×ω
which was taken in section 2.3. As a review, Ω = R×ω ⊆ RN , where ω ⊆ Rd×RN−d−1

(d ≥ 0). If d = 0, the subset ω is a bounded open subset of RN−1. While, in the case
where 1 ≤ d ≤ N − 1, ω is a (L1, . . . , Ld)-periodic open domain of RN−1 which
satisfies (3.1.2); and hence, Ω is a (l, L1, . . . , Ld)− periodic subset of RN that satisfies
(3.1.2) with l > 0. An element of Ω = R × ω will be represented as z = (x, y) where
y ∈ ω ⊆ Rd × RN−1−d. With a domain of such form, we have:

Theorem 2.6.1 Let e = (1, 0, . . . , 0) ∈ RN . Assume that Ω has the form R×ω which
is described above, and that the diffusion matrix A = A(y) satisfies (2.3.5) together
with the assumption

A(x, y)e = A(y)e = α(y)e, for all (x, y) ∈ R× ω; (2.6.1)

where y 7→ α(y) is a positive (L1, . . . , Ld)− periodic function defined over ω. The
nonlinearity f is assumed to satisfy (2.3.3) and (2.3.4). Moreover, one assumes that,
at least, one of ẽ · Aẽ and ζ is not constant. Besides, the advection field q (when it
exists) is in the form q(x, y) = (q1(y), 0, . . . , 0) where q1 has a zero average over C, the
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Chapter 2. Pulsating fronts: Asymptotics and homogenization regimes

periodicity cell of ω. For each β > 0 consider the reaction-advection-diffusion problem{
ut = β∇ · (A(y)∇u) +

√
β q1(y) ∂xu + f(x, y, u), t ∈ R, (x, y) ∈ R× ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

Then the map β 7→
c∗

Ω,βA,
√
β q,f

(e)
√
β

is decreasing in β > 0, and by Theorem 2.4.1,

one has

lim
β→+∞

c∗
Ω,βA,

√
β q,f

(e)
√
β

= 2

√
−
∫
C

ẽAẽ(y)dy

√
−
∫
C

ζ(y)dy,

where C is the periodicity cell of ω.

Remark 2.6.2 In the same setting of Theorem 2.6.1 but with no advection, that is

q1 ≡ 0, we still have β 7→
c∗Ω,βA,0,f (e)√

β
as a decreasing map in β > 0. Moreover, if one

of the alternatives (2.3.7)-(2.3.8) holds and there is no advection, Theorem 2.3.1 yields
that

lim
β→0+

c∗Ω,βA,0,f (e)√
β

= 2
√

max
y∈ω

ẽAẽ(y)
√

max
y∈ω

ζ(y).

The preceding result yields another one concerned in the variation of the minimal
speeds with respect to the periodicity parameter L. In the following, the domain will
be the whole space RN . We choose the diffusion matrix A(x, y) = A(y), the shear
flow q and reaction term f to be (1, . . . , 1)-periodic and to satisfy some restrictions.
For each L > 0, we assign the diffusion matrix AL(x, y) = A(

x

L
,
y

L
), the advection

field q
L
(x, y) = q(

x

L
,
y

L
) and the nonlinearity fL = f(

x

L
,
y

L
, u) and we are going to

study the variation, with respect to the periodicity parameter L, of the minimal speed
c∗RN ,AL,qL ,fL

(e), which corresponds to the reaction-advection-diffusion equation within
the (L, · · · , L)−periodic coefficients A

L
, q

L
and f

L
:

Theorem 2.6.3 Let e = (1, 0, . . . , 0) ∈ RN . An element z ∈ RN is represented as
z = (x, y) ∈ R×RN−1. Assume that A(x, y) = A(y) (for all (x, y) ∈ RN) and f(x, y, u)

satisfy ( (2.3.3), (2.3.4) and 2.3.5) with ω = RN−1, d = N − 1, and l = L1 = . . . =

LN−1 = 1. Assume furthermore, that for all y ∈ RN−1, A(x, y)e = A(y)e = α(y)e,

where y 7→ α(y) is a positive (1, . . . , 1)-periodic function defined over RN−1 and that,
at least, one of ẽ · Aẽ and ζ is not constant. Let q be an advection field satisfying
(3.1.4) and having the form q(x, y) = (q1(y), 0 . . . , 0) for each (x, y) ∈ RN . Consider
the reaction-advection-diffusion problem,

∀ (t, x, y) ∈ R× RN ,
ut(t, x, y) = ∇ · (A

L
(y)∇u)(t, x, y) + (q1)

L
(y)∂xu(t, x, y) + f

L
(x, y, u),

(2.6.2)
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2.6. Variations of the minimal speed of propagation

whose coefficients are (L, . . . , L)−periodic with respect to (x, y) ∈ RN .
Then, the map L 7→ c∗RN ,A

L
, q
L
,f
L

(e) is increasing in L > 0.

Remark 2.6.4 The assumptions of Theorem 2.6.3 can not be fulfilled whenever N = 1.

However, assuming that N = 1 and that the function

ζ

< ζ >A

+
< a >H

a

is not identically equal to 2 (where a(x) is the diffusion factor, < a >H and < ζ >A

are, respectively, the harmonic mean of x 7→ a(x) and arithmetic mean of x 7→ ζ(x)

over [0, 1]), it was proved, in [13], that L 7→ c∗RN ,a
L
, q
L
,f
L

(e) is increasing in L when L

is close to 0. In particular, if a is constant and ζ is not constant, or if µ is constant
and a is not constant, then L 7→ c∗RN ,a

L
, q
L
,f
L

(e) is increasing when L is close to 0.

Concerning now the variation with respect to the reaction factor B, we have the fol-
lowing:

Theorem 2.6.5 Assume that Ω = R × ω and the coefficients A, q and f satisfy the
same assumptions of Theorem 2.6.1. Let e = (1, 0 . . . , 0) and for each B > 0, consider
the reaction-advection-diffusion problem{

ut = ∇ · (A(y)∇u) +
√
B q1(y) ∂xu + Bf(x, y, u), t ∈ R, (x, y) ∈ R× ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

Then, the map B 7→
c∗

Ω,A,
√
B q,Bf

(e)
√
B

is increasing in B > 0.

As a first note, we mention that Theorem 2.6.5 holds also in the case where there is
no advection. On the other hand, Berestycki, Hamel and Nadirashvili [3] proved that
the map B 7→ c∗Ω,A, q,Bf (e) is increasing in B > 0 under the assumptions (3.1.2), (3.1.3),
(3.1.4), (2.2.4), and (4.1.5) which are less strict than the assumptions considered in our
present theorem. However, the present theorem is concerned in the variation of the

map B 7→
c∗

Ω,A,
√
B q,Bf

(e)
√
B

rather than that of B 7→ c∗Ω,A, q,Bf (e).

Remark 2.6.6 Owing to the same justifications given after Theorem 2.3.5, one con-
cludes the importance of taking, in section 2.6, an advection in the form of shear flows.
To study the variations of the minimal speeds as in Theorems 2.6.1, 2.6.3 and 2.6.5,
but in a more general framework (general advection fields, general diffusion, etc...),
formula 3.1.18 remains an important tool. However, we will no longer have variational
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Chapter 2. Pulsating fronts: Asymptotics and homogenization regimes

formulations as (2.8.65) below. These problems remains open in the general periodic
framework.

2.7 The minimal speed as a function of the positive
definite diffusion matrix, Counterexamples

We studied the variation of the function β 7→
c∗

Ω,βA,
√
β q,f

(e)
√
β

in the case where Ω =

R×ω, q is a shear flow of the form q(x, y) = (q1(y), 0, . . . , 0) on Ω, while A and f satisfy

(2.3.5), (2.6.1), (2.3.3) and (2.3.4). We obtained that the map β 7→
c∗

Ω,βA,
√
β q,f

(e)
√
β

is

decreasing with respect to β > 0 in both cases: q1 6≡ 0 or q1 ≡ 0 over ω.
On the other hand, Berestycki, Hamel, and Nadirashvili [3] proved ( in part 2 of

Theorem 1.10) that: having any periodic domain Ω ⊆ RN satisfying (3.1.2), q ≡ 0 and
f = f(u), then the map β 7→ c∗Ω,βA,0,f (e) is increasing in β > 0.

Having the two preceding results, there arise naturally the following two questions:
— First: Do we still have the increasing behavior of the minimal speed with re-

spect to the diffusion factor β in the presence of an advection, even if the
nonlinearity is homogenous?

— Second: Owing to Theorem 3.1.11 (Theorem 1.1 in [3]), the map D : A 7→
c∗Ω,A,q,f (e), where A describes the ordered family of positive definite matrices
satisfying (3.1.3)(we say that A = A(x, y) ≤ B = B(x, y) if and only if for
each (x, y) ∈ Ω and for each z ∈ RN , we have zA(x, y)z ≤ zB(x, y)z. Also,
we say that A < B if and only if for each (x, y) ∈ Ω and for each z ∈ RN ,
we have zA(x, y)z < zB(x, y)z.) is well defined (provided that Ω, q and f

satisfy (3.1.2), (3.1.4), (2.2.4) and (4.1.5)). We investigate the variation of the
minimal speed of propagation with respect to that of the matrix of diffusion.
More precisely, if A = A(x, y) and B = B(x, y) are two positive definite matrices
satisfying (3.1.3) and if A < B, do we still have c∗Ω,A,q,f (e) < c∗Ω,B,q,f (e)?

In fact and as it was mentioned above, we have: β 7→ c∗Ω,βA,0,f (e) is increasing in
β > 0. In other words, the map D restricted to the sub-family PDA = {β A, β > 0}
which is generated by a prefixed matrix A is increasing. So the question becomes now:
Does the previous conclusion remain true over the sub-family PDA in the presence of
an advection ?

The answer of the two preceding questions is negative in general. First, we prove
that the answer to the second question is negative in general for matrices A and B such
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that A ≤ B. We then prove, in section 2.7.2 that, actually, the answer is negative, in
general, even when the diffusion matrices A and B are proportional.

2.7.1 A counterexample devoted to answer the second question

Notation 2.7.1 For each real number b, let Ab denote the N × N matrix having the
form

Ab =



1 0 . . . . . . 0

0 b
. . . ...

... . . . . . . . . . ...

... . . . . . . 0

0 . . . . . . 0 b


.

Proposition 2.7.2 Let e = (1, 0, . . . , 0) ∈ RN , Ω = R × ω ⊆ RN , where ω may or
may not be bounded, and let q = (q1(y), 0, . . . , 0) be a shear flow with a zero average
where q1 6≡ 0 on ω. Assume that the nonlinearity f depend only on y. For each ε > 0,

consider the reaction-diffusion-advection problem
ut(t, x, y) = ∂xxu+ b∆yu+ q1(y)∂xu(t, x, y) + f(y, u) in R× Ω,

= ∇ · (Ab∇u) + q1(y)∂xu + f(y, u),

ν
Ω
(x, y) · Ab∇x,yu(t, x, y) = νω(y) · ∇yu(t, x, y) = 0 for (t, x, y) ∈ R× R× ∂ω,

(2.7.1)

where νω(y) denotes the outward unit normal on ∂ω at the point y ∈ ∂ω ( ν
Ω
(x, y) =

(0, νω(y)) is the outward unit normal on ∂Ω at the point (x, y)) and Ab is the matrix
introduced in Notation 2.7.1. Then,

—

lim
b→+∞

c∗
Ω,Ab, q, f

(e) = 2

√
−
∫

C

ζ(y)dy,

where C is the periodicity cell of ω.
— Moreover, if ζ is constant over ω (say ζ ≡ ζ0), then

lim
b→0+

c∗
Ω,Ab, q, f

(e) = max
ω

(−q1(y)) + 2
√
ζ0.

— In particular, if f = f(u), then

lim
b→+∞

c∗
Ω,Ab, q, f

(e) = 2
√
f ′(0) and

lim
b→0+

c∗
Ω,Ab, q, f

(e) = max
ω

(−q1(y)) + 2
√
f ′(0).
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Proof. Consider the following change of variables:

∀ (t, x, y) ∈ R× R× ω, v(t, x, y) = u(t,
x√
b
, y).

One then has: ∀(t, x, y) ∈ R× R× ω,

vt(t, x, y) = ut(t,
x√
b
, y), ∂xv(t, x, y) =

1√
b
∂x u(t,

x√
b
, y)

∂xxv(t, x, y) =
1

b
∂xxu(t,

x√
b
, y) and ∆y v(t, x, y) = ∆y u(t,

x√
b
, y).

Owing to the invariance of Ω in the x−direction, we have the boundary condition:
∀ (t, x, y) ∈ R× ∂Ω, ν

Ω
(x, y) · ∇x,yv(t, x, y) = 0. Consequently, the problem (2.7.1) is

equivalent to the problem



∀(t, x, y) ∈ R× R× ω

vt(t, x, y) = b ∂xx v + b∆yv +
√
b q1(y)∂xv(t, x, y) + f(y, v),

= b∆x,yv +
√
b q1(y)∂xv + f(y, v) in R× R× ω,

ν
Ω
(x, y) · ∇x,yv(t, x, y) = 0 for (t, x, y) ∈ R× R× ∂ω.

(2.7.2)

Let α∗
Ω, b Id,

√
b q, f

(e) denote the minimal speed of propagation corresponding to

problem (2.7.2). Referring to Theorem 2.4.1, and choosing γ = 1/2, one gets

lim
b→+∞

α∗
Ω, b Id,

√
b q, f

(e)

√
b

= 2

√
−
∫

C

ζ(y)dy. (2.7.3)

On the other hand, α∗
Ω, b Id,

√
b q, f

(e) =
√
b c∗

Ω,Ab, q, f
(e). Together with (2.7.3),

we obtain that lim
b→+∞

c∗
Ω,Ab, q, f

(e) = 2

√
−
∫

C

ζ(y)dy.

For the limit as b→ 0+, it follows from (2.3.12) in Theorem 2.3.3 that

lim
b→0+

c∗
Ω,Ab, q, f

(e) = lim
b→0+

α∗
Ω, b Id,

√
b q, f

(e)

√
b

= max
ω

(−q1(y)) + 2
√
ζ0

whenever ζ ≡ ζ0 (ζ0 is a positive constant).
In particular, if f = f(u) is a homogenous KPP nonlinearity, then ζ(y) = ζ0 = f ′(0)

for all y ∈ ω. �
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Conclusion: Let e = (1, 0, . . . , 0) and Ω = R × ω. Choose f = f(u), and q =

(q1(y), 0, · · · , 0) with
∫
C

q1(y)dy = 0, and so that there exists δ > 0 satisfying

2
√
f ′(0) + δ < max

y∈ω
(−q1(y)) + 2

√
f ′(0)− δ.

It follows, from Propositions (2.7.2), that there exist ε0 > 0 and M0 > 0 such that:

∀ 0 < ε ≤ ε0, c∗
Ω,Aε, q, f

(e) > max
y∈ω

(−q1(y)) + 2
√
f ′(0)− δ and

∀M ≥M0 > 0, c∗
Ω,AM , q, f

(e) < 2
√
f ′(0) + δ.

Consequently, choosing ε small enough andM large enough, it follows thatAM ≥ Aε

in the sense of the order relation on positive definite matrices; however,

c∗
Ω,AM , q, f

(e) < c∗
Ω,Aε, q, f

(e).

Therefore the answer of the second question is negative, in general, even when the
non linearity f is homogenous.

2.7.2 A counterexample devoted to answer the first question

In this subsection, we will show an example of a reaction-advection-diffusion prob-
lem whose diffusion matrix varies in the sub-family of positive definite matrices PDId

= {β Id, β > 0}, where Id stands for the N ×N identity matrix. In this example, we
will apply an advection field which will destruct, even if the nonlinearity f is homoge-
nous, the increasing behavior of the minimal speed with respect to β > 0 (part (d) of
Theorem 2.2.5).

The counterexample

Let e = (1, 0, . . . , 0) ∈ RN , Ω = R × ω ⊆ RN , where ω may or may not be bounded,
and let q = (q1(y), 0, . . . , 0) be a shear flow with a zero average where q1 6≡ 0 on ω.

Assume that the nonlinearity f = f(u) is a homogenous “KPP” nonlinearity so that

0 < 2
√
f ′(0) + δ < max

y∈ω
(−q1(y))− δ, (2.7.4)

for some δ > 0.
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Step 1. Using Theorem 2.4.1, with γ = 1/2, we have

lim
M→+∞

c∗
Ω,M Id,

√
M q, f

(e)

√
M

= 2
√
f ′(0).

Thus, there exists M0 := M0(δ) > 0 such that

∀M ≥M0(δ), 0 < c∗
Ω,M Id,

√
M q, f

(e) <
√
M
(

2
√
f ′(0) + δ

)
Step 2. We fix M1 ≥ max(1,M0(δ)). Then,

0 < c∗
Ω,M1 Id,

√
M1 q, f

(e) <
√
M1

(
2
√
f ′(0) + δ

)
. (2.7.5)

Step 3. For the fixed number M1, we also have
√
M1 q in the form of shear flows.

Theorem 2.3.3 yields that

lim
ε→0+

c∗
Ω, ε Id,

√
M1 q, f

(e) = max
y∈ω

(−
√
M1 q1(y)) =

√
M1 max

y∈ω
(−q1(y)).

Consequently, there exists ε0 = ε0(δ) > 0 such that

∀ ε ≤ ε0, c∗
Ω, ε Id,

√
M1 q, f

(e) >
√
M1

[
max
y∈ω

(−q1(y))− δ
]
> 0. (2.7.6)

Step 4. Choosing 0 < ε1 � min(1, ε0), and owing to (2.7.4), (2.7.5) and (2.7.6), one
then gets

c∗
Ω, ε1 Id,

√
M1 q, f

(e) > c∗
Ω,M1 Id,

√
M1 q, f

(e),

with 0 < ε1 < M1.

This shows that the result of part 4 in Theorem 2.2.5 is no longer valid in the
presence of an advection field, even if one chooses the nonlinearity f as f = f(u).

Remark 2.7.3 To meet with the motivation done in the beginning of section 2.7, we
mention that there appears two important features in the two counterexamples which
were announced in this section. In the counterexample of subsection 2.7.1, the two
matrices A = AM and B = Aε, with M (resp. ε) chosen sufficiently large (resp.
sufficiently small), satisfy the properties A ≥ B and c∗Ω,A,q,f (e) < c∗Ω,B,q,f (e); however,
they are not proportional (that is: there exists no real number α such that A = αB).
Meanwhile, in the counterexample of subsection 2.7.2, the matrices A = Id and B =
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ε Id (ε sufficiently small) are proportional and, in addition, they satisfy: A > B and
c∗Ω,A,q,f (e) < c∗Ω,B,q,f (e).

2.8 Proofs of the announced results

In this section, we are going to demonstrate the Theorems announced in sections
2.3, 2.4, 2.5, and 2.6. We will proceed in 4 subsections, each devoted to proving the
results announced in a corresponding section.

2.8.1 Proofs of Theorems 2.3.1, 2.3.3 and 2.3.4

Proof of Theorem 2.3.1. Under the assumptions of Theorem 2.3.1, we can apply
the variational formula (3.1.18) of the minimal speed. Consequently,

c∗Ω,εA,0,f (e) = min
λ> 0

k
Ω,e, εA, 0, ζ (λ)

λ
, (2.8.1)

where kΩ,e,εA,0,ζ(λ) is the first eigenvalue (for each λ, ε > 0) of the eigenvalue
problem {

L
Ω,e, εA, 0, ζ, λ ψ = k

Ω,e, εA, 0, ζ (λ) ψ(x, y) over R× ω;

ν · A∇ψ = 0 on R × ∂ω,
(2.8.2)

and

L
Ω,e, εA, 0, ζ, λψ(x, y) = ε∇ · (A(y)∇ψ(x, y)) − 2 ε λAe · ∇ψ(x, y) +[

ε λ2eA(y)e − λ ε∇ · (A(y)e) + ζ(y)
]
ψ(x, y),

for all (x, y) ∈ R× ω.
Initially, the boundary condition in (2.8.2) is ν ·A∇ψ = λ ν ·Ae on ∂Ω = R× ∂ω;

where ν(x, y) is the unit outward normal at (x, y) ∈ ∂Ω. However, Ω = R × ω is
invariant in the direction of e which is that of Ae in both alternatives (2.3.7) and
(2.3.8). Consequently, ν · Ae ≡ 0 on ∂Ω.

We recall that for all λ > 0, and for all ε > 0, we have k
Ω,e, εA, 0, ζ (λ) > 0. Also,

the first eigenfunction of (2.8.2) is positive over Ω = R × ω, and it is unique up to
multiplication by a non zero constant.

In our present setting, whether in (2.3.7) or (2.3.8) and due to the assumption
(2.3.4), one concludes that the coefficients in L

Ω,e, εA, 0, ζ, λ are independent of x.
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Moreover, in both alternatives (2.3.7) and (2.3.8), the direction of Ae is the same of
e = (1, 0, · · · , 0). On the other hand, since Ω = R×ω, then for each (x, y) ∈ ∂Ω, we have
ν(x, y) = (0; νω(y)), where νω(y) is the outward unit normal on ∂ω at y. Consequently,
the first eigenfunction of (2.8.2) is independent of x and the eigenvalue problem
(2.8.2) is reduced to

L
Ω,e, εA, 0, ζ, λφ : = ε∇ · (A(y)∇φ(y)) + [ε λ2eA(y)e + ζ(y)]φ(y)

= k
Ω,e, εA, 0, ζ (λ)φ over ω;

ν(x, y) · A(y)∇φ(y) = (0; νω(y)) · A(y)∇φ(y) = 0 on R× ∂ω,
(2.8.3)

where φ = φ(y) is positive over ω, L−periodic (since the domain ω and the coefficients
of L

Ω,e, εA, 0, ζ, λ are L−periodic), unique up to multiplication by a constant, and
belongs to C 2(ω).

In the case where d ≥ 1, let C ⊆ RN−1 denote the periodicity cell of ω. Otherwise,
d = 0 and one takes C = ω. In both cases, C is bounded. Multiplying the first line of
(2.8.3) by φ, and integrating by parts over C, one gets

− k
Ω,e, εA, 0, ζ (λ) =

ε

∫
C

∇φ · A(y)∇φ dy −
∫
C

[
ελ2eA(y)e + ζ(y)

]
φ2(y) dy∫

C

φ2(y) dy
.

(2.8.4)

One also notes that, in this present setting, the operator LΩ,e, εA,0,ζ,λ is self-adjoint
and its coefficients are (L1, . . . , Ld)−periodic with respect (y1, . . . , yd). Consequently,
− k

Ω,e, εA, 0, ζ (λ) has the following variational characterization:

− k
Ω,e, εA, 0, ζ (λ) = min

ϕ∈H1(C)\{0}

ε

∫
C

∇ϕ · A(y)∇ϕdy −
∫
C

[
ελ2eA(y)e + ζ(y)

]
ϕ2(y) dy∫

C

ϕ2(y) dy
.

(2.8.5)

In what follows, we will assume that (2.3.7) is the alternative that holds. That is,
eAe = α is constant. The proof can be imitated easily whenever we assume that (2.3.8)
holds.

The function y 7→ ζ(y) is continuous and (L1, . . . , Ld)−periodic over ω, whose
periodicity cell C is a bounded subset of RN−1 (whether d = 0 or d ≥ 1). Let y0 ∈
C ⊆ ω such that max

y∈w
ζ(y) = ζ(y0) (trivially, this also holds when ζ is constant).
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Consequently, we have

∀ ϕ ∈ H1(C) \ {0},
ε

∫
C

∇ϕ · A∇ϕ−
∫
C

(εαλ2 + ζ(y))ϕ2∫
C

ϕ2(y) dy
≥ −

[
εαλ2 + ζ(y0)

]
.

This yields that

∀ ε > 0, ∀λ > 0, − k
Ω,e, εA, 0, ζ (λ) ≥ −

[
εαλ2 + ζ(y0)

]
. (2.8.6)

Consequently,

∀ ε > 0, ∀λ > 0,
k

Ω,e, εA, 0, ζ (λ)

λ
≤ λαε +

ζ(y0)

λ
. (2.8.7)

However, the function λ 7→ λαε +
ζ(y0)

λ
attains its minimum, over R+, at λ(ε) =√

ζ(y0)

αε
. This minimum is equal to 2

√
ζ(y0)×

√
α ε. From (2.8.7), we conclude that

k
Ω,e, εA, 0, ζ (λ(ε))

λ(ε)
≤ 2
√
αε
√
ζ(y0).

Finally, (3.1.18) implies that c∗Ω,εA,0,f (e) = min
λ> 0

k
Ω,e, εA, 0, ζ (λ)

λ
≤ 2
√
α ε
√
ζ(y0),

or equivalently

∀ε > 0,
c∗Ω,εA,0,f (e)√

ε
≤ 2
√
α
√
ζ(y0). (2.8.8)

We pass now to prove the other sense of the inequality for lim inf
ε→0+

c∗Ω,εA,0,f (e)√
ε

. We

will consider formula (2.8.5), and then organize a suitable function ψ which leads us

to a lower bound of lim inf
ε→0+

c∗Ω,εA,0,f (e)√
ε

.

We have ζ(y0) > 0. Let δ be such that 0 < δ < ζ(y0). Thus 0 < ζ(y0)− δ < max
ω

ζ(y).

The continuity of ζ, over C ⊆ ω, yields that there exists an open and bounded set
U ⊂ C such that

∀ y ∈ U, ζ(y0)− δ ≤ ζ(y). (2.8.9)

Designate by ψ, a function in D(C) (a C∞(C) function whose support is compact),
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with suppψ ⊆ U, and
∫
U

ψ2 = 1. One will have,

∀λ > 0, ∀ ε > 0,

− k
Ω,e, εA, 0, ζ (λ) ≤ ε

∫
U

∇ψ · A(y)∇ψ dy −
∫
U

[
ελ2eA(y)e + ζ(y)

]
ψ2(y) dy

≤ ε

∫
U

∇ψ · A(y)∇ψ dy −
[
ελ2α + ζ(y0)− δ

] ∫
U

ψ2(y) dy

≤ ε

∫
U

α2|∇ψ|2 −
[
ελ2α + ζ(y0)− δ

]
, by (2.3.5),

or equivalently
k

Ω,e, εA, 0, ζ (λ)

λ
≥ λαε +

1

λ
β(ε), (2.8.10)

where β(ε) = ζ(y0)−δ−ε
∫
U

α2|∇ψ|2. Choosing 0 < ε <
ζ(y0)− δ

α2

∫
U

|∇ψ|2
(this is possible),

we get β(ε) > 0.

The map λ 7→ λαε +
1

λ
β(ε) attains its minimum, over R+, at λ(ε) =

√
β(ε)

εα
.

This minimum is equal to 2
√
ε α
√
β(ε).

Now, referring to formula (2.8.10), one gets

For ε small enough,
k

Ω,e, εA, 0, ζ (λ)

λ
≥ 2
√
εα
√
β(ε) for all λ > 0.

Together with (3.1.18), we conclude that

for ε small enough,
c∗Ω,εA,0,f (e)√

ε
≥ 2

√
β(ε)
√
α. (2.8.11)

Consequently,

lim inf
ε→0+

c∗Ω,εA,0,f (e)√
ε

≥ lim inf
ε→0+

2
√
β(ε)
√
α

= 2
√
ζ(y0)− δ

√
α (since ψ is independent of ε),

and this holds for all 0 < δ < ζ(y0). Therefore, one can conclude that

lim inf
ε→0+

c∗Ω,εA,0,f (e)√
ε

≥ 2
√
α
√
ζ(y0). (2.8.12)
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Finally, the inequalities (2.8.8) and (2.8.12) imply that lim
ε→0+

c∗Ω,εA,0,f (e)√
ε

exists, and

it is equal to
2
√
α
√
ζ(y0) = 2

√
max
ω

eA(y)e
√

max
ω

ζ(y).

We note that the same ideas of this proof can be easily applied in the case where
the assumption (2.3.8) holds. In (2.3.8), we have ζ is constant; however, eAe is not
in general. Meanwhile the converse is true in the case (2.3.7). The little difference is
that, in the case of (2.3.8), we choose the subset U (of the proof done above) around
the point y0 where eAe attains its maximum and then we continue by the same way
used above. �

Proof of Theorem 2.3.3. We have

c∗Ω,εA,q,f (e) = min
λ> 0

k
Ω,e, εA, q, ζ (λ)

λ
, (2.8.13)

where (due to the facts that q is a shear flow, e = (1, 0, · · · , 0) and e is an eigenvector
of the matrix A(y) for all y ∈ ω) k

Ω,e, εA, q, ζ (λ) is the principal eigenvalue of the
problem {

LΩ,e, εA, q,ζ,λψ(x, y) = kΩ,e, εA, q,ζ(λ)ψ(x, y) over R× ω;

ν · A∇ψ = 0 on R × ∂ω,

with

LΩ,e,εA, q,ζ,λ ψ = ε∇ · (A(y)∇ψ)− 2ελα(y) ∂xψ + q1(y)∂xψ

+ [ε λ2eA(y)e − λq1(y) + ζ(y)]ψ over R× ω.
(2.8.14)

The uniqueness of the principal eigenfunction ψ up to multiplication by a constant,
yields that one can choose ψ independent of x. Hence, the elliptic operator LΩ,e,εA, q,ζ,λ

can be reduced to the symmetric operator

LΩ,e,εA, q,ζ,λ ψ = ε∇ · (A(y)∇ψ) +
[
ε λ2eA(y)e − λq1(y) + ζ(y)

]
ψ.
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Consequently,

∀λ > 0, ∀ε > 0, −kΩ,e, εA, q,ζ(λ) =

min
ϕ∈H1(C)\{0}

ε

∫
C

∇ϕ · A(y)∇ϕdy + λ

∫
C

q1(y)ϕ2 −
∫
C

[
λ2εeA(y)e + ζ(y)

]
ϕ2(y) dy∫

C

ϕ2(y) dy
.

(2.8.15)
Formula (2.8.15) yields that

∀λ > 0, ∀ε > 0, −kΩ,e, εA, q,ζ(λ) ≥ −λmax
y∈ω

(−q1(y))− λ2εmax
y∈ω

eA(y)e−max
y∈ω

ζ(y),

or equivalently

∀λ > 0, ∀ε > 0,
kΩ,e, εA, q,ζ(λ)

λ
≤ max

y∈ω
(−q1(y)) + λεmax

y∈ω
eA(y)e+

max
y∈ω

ζ(y)

λ
.

Putting λ = λ(ε) =

√
maxy∈ω ζ(y)

εmaxy∈ωe·A(y)e

> 0 into the last inequality yields that

min
λ> 0

k
Ω,e, εA, q, ζ (λ)

λ
≤ max

y∈ω
(−q1(y)) + 2

√
ε
√

max
y∈ω

e · A(y)e
√

max
y∈ω

ζ(y),

and hence,
lim sup
ε→0+

c∗Ω,εA,q,f (e) ≤ max
y∈ω

(−q1(y)) . (2.8.16)

Now, we take y0 ∈ C (C is the periodicity cell of ω) such that maxy∈ω (−q1(y)) =

−q1(y0) > 0 (since q is periodic with respect to y, q1 6≡ 0 and q1 has a zero average)
and we take δ > 0 such −q1(y0)−δ > 0. It follows, from the continuity of q1, that there
exists an open subset U ⊂ C such that y0 ∈ U and

∀y ∈ U, −q1(y) ≥ max
y∈ω

(−q1(y))− δ.

Let ψ be a function in D(C) with suppψ ⊆ U, and
∫
U

ψ2 = 1. Referring to (2.8.15),

it follows that

∀λ > 0,∀ε > 0,
k

Ω,e, εA, q, ζ (λ)

λ
≥ −q1(y0)− δ + λεmin

y∈ω
e · Ae +

1

λ
β(ε), (2.8.17)
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where β(ε) = min
y∈ω

ζ(y) − ε

∫
U

α2|∇ψ|2 > 0 for a small enough ε > 0 (α2 > 0 is the

constant appearing in (2.3.5)).

It follows from (2.8.17) that

∀λ > 0,∀ε > 0,
k

Ω,e, εA, q, ζ (λ)

λ
≥ −q1(y0)− δ + 2

√
ε
√

min
y∈ω

e · Ae
√
β(ε).

Together with (2.8.13), and since δ > 0 is arbitrary, one gets

lim inf
ε→0+

c∗Ω,εA,q,f (e) ≥ −q1(y0) = max
y∈ω

(−q1(y)). (2.8.18)

Finally, (2.8.16) and (2.8.18) complete the proof of (2.3.11).

Similarly, one can use the above technics to prove (2.3.12). However, we will do the
proof for the sake of completeness. First, one can easily check that

∀λ > 0, ∀ε > 0,
kΩ,e, εA,

√
ε q,ζ(λ)

λ
√
ε

≤ max
y∈ω

(−q1(y)) + λ
√
εmax
y∈ω

eA(y)e+
max
y∈ω

ζ(y)

λ
√
ε

.

Putting λ =

√
maxy∈ω ζ(y)

maxy∈ωe·A(y)e

> 0 into the last inequality yields that

min
λ> 0

k
Ω,e, εA, q, ζ (λ)

λ
√
ε

≤ max
y∈ω

(−q1(y)) + 2
√

max
y∈ω

e · A(y)e
√

max
y∈ω

ζ(y).

Having eAe and ζ as constants, one then gets

lim sup
ε→0+

c∗
Ω,εA,

√
ε q,f

(e)
√
ε

≤ max
y∈ω

(−q1(y)) + 2
√
α
√
ζ0. (2.8.19)

On the other hand, we take y0 ∈ C so that −q1(y0) = maxω(−q1(y)). Also we take
any positive number δ so that 0 < δ1 < −q1(y0). It follows, from the continuity of q1

with respect to y, that there exist three subsets U 3 y0 of C such that

−q1(y) ≥ (−q1(y0))− δ > 0 for all y ∈ U.

Let ψ be a function in D(C) so that
∫
C

ψ2 = 1 and ψ ≡ 0 on C \U. For each ε > 0,

we have

c∗Ω,εA,√ε q,f (e) = min
λ>0

k
Ω,e, εA,

√
ε q, ζ

(λ)

λ
,
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where (owing to the same above justifications)

∀λ > 0, ∀ε > 0, −kΩ,e, εA,
√
ε q,ζ(λ) =

min
ϕ∈H1(C)\{0}

ε

∫
C

∇ϕ · A(y)∇ϕdy + λ

∫
C

q1(y)ϕ2 −
∫
C

[
λ2εeA(y)e + ζ(y)

]
ϕ2(y) dy∫

C

ϕ2(y) dy

min
ϕ∈H1(C)\{0}

ε

∫
C

∇ϕ · A(y)∇ϕdy + λ

∫
C

q1(y)ϕ2 −
∫
C

[
λ2εα + ζ0

]
ϕ2(y) dy∫

C

ϕ2(y) dy

(2.8.20)
since eAe and ζ are constants. Having ψ ∈ H1(C) \ {0}, it follows that

∀λ > 0,∀ε > 0,
k

Ω,e, εA,
√
εq, ζ

(λ)

λ
≥
√
ε(−q1(y0)− δ) + λεα +

1

λ
β(ε), (2.8.21)

where β(ε) = ζ0 − ε
∫
U

α2|∇ψ|2 > 0 for ε > 0 small enough. Thus,

∀ε > 0, c∗Ω,εA,√ε q,f (e) ≥
√
ε(−q1(y0)− δ) + 2

√
ε
√
α
√
β(ε).

Since δ was arbitrarily chosen, one the concludes that

lim inf
ε→0+

c∗
Ω,εA,

√
ε q,f

(e)
√
ε

≥ −q1(y0) + 2
√
α
√
ζ0.

Together with (2.8.19), the proof of (2.3.12) is complete. �

Proof of Theorem 2.3.4. Consider the change of variables

v(t, x, y) = u(t, Lx, Ly), (t, x, y) ∈ R× R× RN−1.

The function u satisfies (2.3.13) if and only if v satisfies

vt(t, x, y) =
1

L2 ∇ · (A(y)∇v)(t, x, y) + f(x, y, v) over R× R× RN−1. (2.8.22)

Consequently,
∀L > 0, c∗RN ,A

L
, 0, f

L

(e) = L c∗RN , 1

L
2 A,0,f

(e) (2.8.23)
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Taking ε = 1/L
2

, and applying Theorem 2.3.1 to problem (2.8.22), one then has

lim
L→+∞

c∗RN , 1

L
2 A,0,f

(e)√
1

L2

= lim
ε→0+

c∗RN ,εA,0,f (e)√
ε

= 2
√

max
y ∈RN−1

ζ(y)
√

max
y ∈RN−1

eA(y)e.

(2.8.24)
Finally, (2.8.23) together with (2.8.24) complete the proof of Theorem 2.3.4. �

Proof of Theorem 2.3.5. Under the same change of variables considered in the
proof of Theorem 2.3.4 above, one gets

∀L > 0, c∗
RN ,A

L
, Lq

L
, f

L

(e) = L c∗RN , 1

L
2 A,q,f

(e) and

c∗
RN ,A

L
, q

L
, f

L

(e) = L c∗RN , 1

L
2 A,

1
L
q,f

(e).

Taking ε =
1

L2
and using (2.3.11), then (2.3.15) follows. On the other hand, (2.3.12)

implies (2.3.16) whenever eAe and ζ are constant over RN−1. �

2.8.2 Proofs of Theorems 2.4.1 and 2.4.3

Proof of Theorem 2.4.1. The proof will be divided into three steps:
Step 1. According to Theorem 3.1.11, and since ν · Aẽ = 0 on ∂Ω, the minimal

speeds c∗
Ω,MA,Mγq, f (e) are given by:

∀M > 0, c∗
Ω,MA,Mγ q, f (e) = min

λ>0

k
Ω,e, MA, Mγ q, ζ (λ)

λ
,

where k
Ω,e, MA, Mγ q, ζ (λ) and ψλ,M denote the unique eigenvalue and the positive

L-periodic eigenfunction of the problem

M∇ · (A∇ψλ,M)− 2Mλẽ · A∇ψλ,M +Mγq · ∇ψλ,M + [λ2M ẽAẽ− λMγq · ẽ+ ζ]ψλ,M

= k
Ω,e, MA, Mγ q, ζ (λ)ψλ,M in Ω,

with ν · A∇ψλ,M = 0 on ∂Ω.

For each λ > 0 and M > 0, let λ ′ = λ
√
M, and let k

Ω,e, MA, Mγ q, ζ (λ) =

µ(λ
′
,M). Consequently,

∀M > 0,
c∗

Ω,MA,Mγ q, f (e)
√
M

= min
λ ′>0

µ(λ
′
,M)

λ ′
, (2.8.25)
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where µ(λ
′
,M) and ψλ

′
,M are the first eigenvalue and the unique, positive L−periodic

(with respect to x ) eigenfunction of

M∇ · (A∇ψλ
′
,M)− 2λ′

√
Mẽ · A∇ψλ

′
,M +Mγq · ∇ψλ

′
,M

+

[
λ
′2
ẽAẽ− λ

′

M
1
2−γ

q · ẽ+ ζ

]
ψλ
′
,M = µ(λ

′
,M)ψλ

′
,M in Ω,

(2.8.26)

with ν · A∇ψλ
′
,M = 0 on ∂Ω.

Owing to the uniqueness, up to multiplication by positive constants, of the first
eigenfunction of (2.8.26), one may assume that:

∀λ′ > 0, ∀M > 0, ||ψλ
′
,M ||L2(C) = 1. (2.8.27)

Moreover, for each M > 0, min
λ ′>0

µ(λ
′
,M)

λ ′
is attained at λ ′M > 0. Thus,

∀M > 0,
c∗

Ω,MA,Mγ q, f (e)
√
M

= min
λ ′>0

µ(λ
′
,M)

λ ′
=
µ(λ

′
M ,M)

λ
′
M

. (2.8.28)

The above characterization of c∗
Ω,MA,Mγ q, f (e)/

√
M will be used in the next steps

in order to prove that lim inf
M→+∞

c∗
Ω,MA,Mγ q, f (e)/

√
M (resp. lim sup

M→+∞
c∗

Ω,MA,Mγ q, f (e)/
√
M

) is greater than (resp. less than) 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy; and hence,

complete the proof.

Step 2. Fix λ ′ > 0 and M > 0. We divide (2.8.26) by ψλ
′
,M then, using the facts

∇.Aẽ ≡ 0 in Ω and ν ·Aẽ = 0 on ∂Ω, we integrate by parts over the periodicity cell C.
It follows from (3.1.4) and the L−periodicity of A, ζ and ψλ

′
,M that

∫
C

∇ψλ
′
,M · A∇ψλ

′
,M(

ψλ
′ ,M
)2 + λ

′ 2
∫
C

ẽAẽ+

∫
C

ζ = µ(λ
′
,M)|C|, (2.8.29)

where |C| denotes the Lebesgue measure of C. Let

m0 = −
∫
C

ẽAẽ =
1

|C|

∫
C

ẽA(x, y)ẽ dx dy and m = −
∫
C

ζ(x, y) dx dy.
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One concludes that

∀λ ′ > 0, ∀M > 0, µ(λ
′
,M) ≥ λ

′ 2−
∫
C

ẽAẽ+−
∫
C

ζ = λ
′ 2
m0 +m,

whence

∀λ ′ > 0, ∀M > 0,
µ(λ

′
,M)

λ ′
≥ λ

′
m0 +

m

λ ′
. (2.8.30)

The right side of (2.8.30) attains its minimum over R+ at λ
′

0 =

√
m

m0

. This minimum

is equal to 2
√
m0m.

Consequently, for any M > 0,
c∗

Ω,MA,Mγ q, f (e)
√
M

= min
λ ′>0

µ(λ
′
,M)

λ ′
≥ 2
√
m0m. This

yields that

lim inf
M→+∞

c∗
Ω,MA,Mγ q, f (e)

√
M

≥ 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy. (2.8.31)

Step 3. Fix λ ′ > 0 and M > 0. Multiply (2.8.26) by ψλ
′
,M and integrate by parts

over C. Owing to the L−periodicity of Ω, A, ζ and ψλ
′
,M , and due to the facts that∫

C

(
ψλ
′
,M
)2

= 1, ∇ · Aẽ ≡ 0 in Ω, and that ν · Aẽ = 0 on ∂Ω, together with (3.1.4),

one gets

−M
∫
C

∇ψλ
′
,M · A∇ψλ

′
,M + λ

′ 2
∫
C

ẽAẽ
(
ψλ
′
,M
)2

+

∫
C

ζ
(
ψλ
′
,M
)2

− λ
′

M
1
2−γ

∫
C

q · ẽ
(
ψλ
′
,M
)2

= µ(λ
′
,M),

(2.8.32)

whence

∀λ ′ > 0, ∀M > 0, 0 < µ(λ
′
,M) ≤ λ

′ 2
α + β +

λ
′

M
1
2−γ
|| (q · ẽ)− ||∞,

where α = max
(x,y)∈Ω

ẽAẽ(x, y) and β = max
(x,y)∈Ω

ζ(x, y). Together with (2.8.30), one gets

∀λ ′ > 0, ∀M > 0, 0 < λ
′2
m0 +m ≤ µ(λ

′
,M) ≤ λ

′ 2
α + β +

λ
′

M
1
2−γ
|| (q · ẽ)− ||∞.

(2.8.33)

If γ =
1

2
, then

λ
′

M
1
2−γ
|| (q · ẽ)− ||∞ = λ

′|| (q · ẽ)− ||∞. On the other hand, if 0 ≤ γ <
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1

2
, then

λ
′

M
1
2−γ
|| (q · ẽ)− ||∞ → 0 as M → +∞.

Consequently, the right side of (2.8.33) is bounded above by a positive constant B
which does not depend on M and γ. This yields that

∀λ′ > 0, 0 < lim sup
M→+∞

µ(λ
′
,M) < +∞.

On the other hand, it follows from (3.1.3) and (2.8.32) that ∀λ ′ > 0,∀M > 0,

0 ≤ α1

∫
C

|∇ψλ
′
,M |2 ≤

∫
C

∇ψλ
′
,M · A∇ψλ

′
,M

≤ 1

M

[
−µ(λ

′
,M) + λ

′2
∫
C

ẽAẽ
(
ψλ
′
,M
)2

+

∫
C

ζ
(
ψλ
′
,M
)2

− λ
′

M
1
2−γ

∫
C

q · ẽ
(
ψλ
′
,M
)2
]

<
B

M
.

Meanwhile, lim
M→+∞

B

M
= 0, one then gets


∀λ ′ > 0, lim

M→+∞

∫
C

|∇ψλ
′
,M |2 = 0,

∀λ ′ > 0, ∀M > 0,

∫
C

(
ψλ
′
,M
)2

= 1.
(2.8.34)

Fix λ
′
> 0, and let (Mn)n be a sequence converging to +∞ as n → +∞

and such that µ(λ
′
,Mn)→ l λ

′
,(Mn) as n → +∞. It follows, from (2.8.34), that

||ψλ
′
,Mn||H1(C) → 1 as n → +∞. Thus, the sequence (ψλ

′
,Mn)n is bounded in H1(C).

Therefore, there exists a function ψλ
′
,∞ ∈ H1(C) such that, up to extraction of some

subsequence, the functions (ψλ
′
,Mn)n converge in L2(C) strong, H1(C) weak and al-

most everywhere in C, to the function ψλ
′
,∞. Consequently, and owing to (2.8.34),

ψλ
′
,∞ satisfies ∫

C

(
ψλ
′
,∞
)2

= 1, and (2.8.35)

(∫
C

|∇ψλ
′
,∞|2

) 1
2

≤ lim inf
Mn→+∞

(∫
C

|∇ψλ
′
,Mn|2

) 1
2

= 0. (2.8.36)

From (2.8.36), it follows that for all λ′ > 0, the function ψλ
′
,∞ is almost every-
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where constant over C. On the other hand, the elliptic regularity applied on equation
(2.8.26) for M = Mn, implies that ∀λ′ > 0, the function ψλ

′
,∞ is continuous over C.

Consequently, referring to (2.8.35), one gets

∀λ′ > 0, ψλ
′
,∞ =

1√
|C|

over C. (2.8.37)

Consider now equation (2.8.26). Fix λ
′
, take M = Mn, and integrate by parts

over C. It follows, from (3.1.3), (3.1.4) and the assumptions ∇.Aẽ ≡ 0 over Ω with

ν.Aẽ = 0 on ∂Ω, that
∫
C

Mn∇ · (A∇ψλ
′
,Mn) = 0,

∫
C

−2λ′
√
Mnẽ · A∇ψλ

′
,Mn = 0, and∫

C

q · ∇ψλ
′
,Mn = 0. Hence,

− λ
′

M
1
2−γ
n

∫
C

q · ẽ ψλ
′
,Mn + λ

′2
∫
C

ẽ · Aẽψλ
′
,Mn +

∫
C

ζ ψλ
′
,Mn = µ(λ

′
,Mn)

∫
C

ψλ
′
,Mn .

(2.8.38)
Meanwhile, the functions ψλ

′
,Mn converge to the constant function ψλ

′
,∞ in L2(C)

strong; and hence, in L1(C) strong ( C is bounded, so L2(C) is embedded in L1(C)).
Let Mn → +∞ in (2.8.38):

In case γ = 1/2, one has

λ
′

M
1
2−γ
n

∫
C

q · ẽ ψλ
′
,Mn = λ

′
∫
C

q · ẽ ψλ
′
,Mn → λ

′
ψλ
′
,∞
∫
C

q · ẽ = 0,

as n→ +∞ (from (3.1.4)). Also, in the case 0 ≤ γ < 1/2, one trivially has

λ
′

M
1
2−γ
n

∫
C

q · ẽ ψλ
′
,Mn → 0 as n→ +∞.

Moreover, ẽAẽ and ζ are in L∞(C). Thus, as Mn → +∞ in (2.8.38), we get

λ
′2
ψλ
′
,∞
∫
C

ẽAẽ + ψλ
′
,∞
∫
C

ζ = l λ
′
,(Mn) ψλ

′
,∞|C|.

One concludes that

∀λ′ > 0,
l λ
′
,(Mn)

λ′
= λ

′−
∫
C

ẽAẽ +

−
∫
C

ζ

λ ′
= λ

′
m0 +

m

λ′
. (2.8.39)
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Whence for λ
′

= λ
′

0 =

√
m

m0

, one gets
l λ
′
0,(Mn)

λ
′
0

= 2
√
m0m.

On the other hand, for all Mn,

c∗
Ω,MnA,Mγ

n q, f
(e)

√
Mn

= inf
λ′>0

µ(λ
′
,Mn)

λ ′
≤ µ(λ

′
0,Mn)

λ
′
0

. (2.8.40)

Passing Mn → +∞, one gets lim sup
Mn→+∞

c∗
Ω,MnA,Mγ

n q, f
(e)

√
Mn

≤ l λ
′
0,(Mn)

λ
′
0

= 2
√
m0m, and

this holds for all sequences {Mn}n converging to +∞. Thus,

lim sup
M→+∞

c∗
Ω,MA,Mγ q, f (e)

√
M

≤ 2

√
−
∫
C

ẽAẽ(x, y) dxdy

√
−
∫
C

ζ(x, y) dxdy. (2.8.41)

Having (2.8.31) together with (2.8.41), the proof of Theorem 2.4.1 is complete. �

Proof of Theorem 2.4.3. We will consider the change of variables similar to that
made in the proof of Theorem 2.3.4:

v(t, x, y) = u(t, Lx, Ly), (t, x, y) ∈ R× RN .

After the same calculations done there, one gets that u satisfies (2.4.1) if and only
if v satisfies

vt(t, x, y) =
1

L2∇ · (A(x, y)∇v)(t, x, y) +
1

L
q · ∇v(t, x, y) + f(x, y, v) over R× RN .(2.8.42)

Consequently,

∀L > 0, c∗RN ,A
L
, q

L
, f

L

(e) = L c∗RN , 1

L
2 A,

1
L
q,f

(e). (2.8.43)

On the other hand, the coefficients and the domain of problem (2.8.42) satisfy all
the assumptions of Theorem 2.4.1. Taking M = 1/L

2

and γ = 1/2, then (2.8.42) can
be rewritten as

vt(t, x, y) = M ∇ · (A(x, y)∇v)(t, x, y) +M
1
2 q · ∇v(t, x, y) + f(x, y, v) over R× RN .

In this situation, the periodicity cell of the whole space RN is C = [0, 1]× · · · × [0, 1].
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It follows, from Theorem 2.4.1, that

lim
L→0+

c∗RN , 1

L
2 A,

1
L
q,f

(e)√
1

L2

= lim
M→+∞

c∗
RN ,M A,M

1
2 q,f

(e)
√
M

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy.

(2.8.44)

Having (2.8.43) together with (2.8.44), the proof of Theorem 2.4.3 is complete. �

2.8.3 Proofs of Theorems 2.5.1 and 2.5.2

Proof of Theorem 2.5.1. The main ideas of this proof are similar to those in
the demonstration of Theorem 2.3.1. Applying the variational formula (3.1.18) of the
minimal speed, one gets

c∗Ω,A,0, Bf (e) = min
λ> 0

kΩ,e, A, 0, Bζ(λ)

λ
, (2.8.45)

where kΩ,e,A,0,Bζ(λ) is the first eigenvalue (for each λ, B > 0) of the eigenvalue
problem: {

LΩ,e, A, 0,Bζ,λ ψ(x, y) = k
Ω,e, A, 0,Bζ

(λ) ψ(x, y) over R× ω;

ν · A∇ψ = 0 on R × ∂ω,
(2.8.46)

and

LΩ,e, A, 0,B ζ,λψ(x, y) = ∇ · (A(y)∇ψ(x, y)) − 2λAe · ∇ψ(x, y) +[
λ2eA(y)e − λ∇ · (A(y)e) + Bζ(y)

]
ψ(x, y),

for each (x, y) ∈ R× ω.

We recall that for all λ > 0, and for all B > 0, we have k
Ω,e, A, 0,Bζ (λ) > 0. Also,

the first eigenfunction of (2.8.46) is positive over Ω = R × ω, and it is unique up to
multiplication by a non zero constant.

Moreover, whether in (2.3.7) or (2.3.8) and due to (2.3.4), one concludes that the
coefficients in L

Ω,e, A, 0,Bζ, λ are independent of x. Hence, the first eigenfunction of
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(2.8.46) is independent of x and the eigenvalue problem (2.8.46) is reduced to
L

Ω,e, A,0,Bζ, λφ := ∇ · (A(y)∇φ(y)) + [λ2eA(y)e + Bζ(y)]φ(y)

= kΩ,e, A, 0,Bζ(λ)φ over ω;

ν(x, y) · A(y)∇φ(y) = (0; νω(y)) · A(y)∇φ(y) = 0 on R× ∂ω,

(2.8.47)

where φ = φ(y) is positive over ω, L−periodic (since the domain ω and the coeffi-
cients of L

Ω,e, A,0,Bζ, λ are L−periodic), unique up to multiplication by a constant, and
belongs to C 2(ω).

In the case where d ≥ 1, let C ⊆ RN−1 denote the periodicity cell of ω. Otherwise,
d = 0 and one takes C = ω. In both cases, C is bounded. Multiplying the first line of
(2.8.47) by φ, and integrating by parts over C, one gets

− k
Ω,e, A, 0,Bζ (λ) =

∫
C

∇φ · A(y)∇φ dy −
∫
C

[
λ2eA(y)e + B ζ(y)

]
φ2(y) dy∫

C

φ2(y) dy
.

(2.8.48)

One also notes that, in this present setting, the operator L
Ω,e, A,0,Bζ, λ is self-adjoint

and its coefficients are (L1, . . . , Ld)−periodic with respect (y1, . . . , yd). Consequently,
− k

Ω,e, A, 0,Bζ (λ) has the following variational characterization:

− k
Ω,e, A, 0,Bζ (λ) = min

ϕ∈H1(C)\{0}

∫
C

∇ϕ · A(y)∇ϕdy −
∫
C

[
λ2eA(y)e + B ζ(y)

]
ϕ2(y) dy∫

C

ϕ2(y) dy
.

(2.8.49)

In what follows, we will assume that (2.3.7) is the alternative that holds. That is,
eAe = α is constant. The proof can be imitated easily whenever we assume that (2.3.8)
holds.

The function y 7→ ζ(y) is continuous and (L1, . . . , Ld)−periodic over ω, whose
periodicity cell C is a bounded subset of RN−1 (whether d = 0 or d ≥ 1). Let y0 ∈
C ⊆ ω such that max

y∈w
ζ(y) = ζ(y0) (trivially, this also holds when ζ is constant).

Consequently, we have

∀ ϕ ∈ H1(C) \ {0},

∫
C

∇ϕ · A∇ϕ−
∫
C

(αλ2 + B ζ(y))ϕ2∫
C

ϕ2(y) dy
≥ −

[
αλ2 + B ζ(y0)

]
.
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This yields that

∀B > 0, ∀λ > 0, − k
Ω,e, A, 0,B ζ (λ) ≥ −

[
αλ2 + B ζ(y0)

]
. (2.8.50)

Consequently,

∀B > 0, ∀λ > 0,
k

Ω,e, A, 0,Bζ (λ)

λ
≤ λα +

B ζ(y0)

λ
. (2.8.51)

However, the function λ 7→ λα + (B ζ(y0)/λ) attains its minimum, over R+, at

λ(B) =

√
B ζ(y0)

α
. This minimum is equal to 2

√
Bζ(y0)×

√
α.

From (2.8.51), we conclude that:
k

Ω,e, A, 0,Bζ (λ(B))

λ(B)
≤ 2
√
B α

√
ζ(y0).

Finally, (3.1.18) implies that

c∗
Ω,A,0,Bf (e) = min

λ> 0

k
Ω,e, A, 0,Bζ (λ)

λ
≤ 2
√
B α

√
ζ(y0),

or equivalently

∀B > 0,
c∗Ω,A,0,Bf (e)√

B
≤ 2
√
α
√
ζ(y0). (2.8.52)

We pass now to prove the other sense of the inequality for lim inf
B→+∞

c∗Ω,A,0,Bf (e)√
B

. We

will consider formula (2.8.5), and then organize a suitable function ψ which leads us

to a lower bound of lim inf
B→+∞

c∗Ω,A,0,Bf (e)√
B

.

We have ζ(y0) > 0. Let δ be such that 0 < δ < ζ(y0). Thus 0 < ζ(y0)− δ < max
ω

ζ(y).

The continuity of ζ, over C ⊆ ω, yields that there exists an open and bounded set
U ⊂ C such that

ζ(y0)− δ ≤ ζ(y), ∀ y ∈ U. (2.8.53)

Designate by ψ, a function in D(C) (a C∞(C) function whose support is compact),
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with suppψ ⊆ U, and
∫
U

ψ2 = 1. One will have,

∀λ > 0, ∀B > 0,

− k
Ω,e, A, 0,B ζ (λ) ≤

∫
U

∇ψ · A(y)∇ψ dy −
∫
U

[
λ2eA(y)e + B ζ(y)

]
ψ2(y) dy

≤
∫
U

∇ψ · A(y)∇ψ dy −
[
λ2α + B (ζ(y0)− δ)

]
(by (2.8.53))

≤
∫
U

α2|∇ψ|2 −
[
λ2α + B (ζ(y0)− δ)

]
by (2.3.5),

or equivalently
kΩ,e, A, 0, B ζ(λ)

λ
≥ λα +

B

λ
ρ(B), (2.8.54)

where ρ(B) = ζ(y0) − δ − 1

B

∫
U

α2|∇ψ|2. Choosing B large enough, we get ρ(B) > 0

(this is possible since ζ(y0) − δ > 0 and also
∫
U

α2|∇ψ|2 > 0). The map λ 7→

λα +
B

λ
ρ(B) attains its minimum, over R+, at λ(ε) =

√
B ρ(B)

α
. This minimum is

equal to 2
√
B α

√
ρ(B).

Now, referring to formula (2.8.54), one gets:

for B large enough,
k

Ω,e, A, 0,Bζ(λ)

λ
≥ 2
√
B α

√
ρ(B) for all λ > 0.

Together with (3.1.18), we conclude that

for B large enough,
c∗

Ω,A,0,Bf (e)
√
B

≥ 2
√
ρ(B)

√
α. (2.8.55)

Consequently,

lim inf
B→+∞

c∗
Ω,A,0,Bf (e)
√
B

≥ lim inf
B→+∞

2
√
ρ(B)

√
α

= 2
√
ζ(y0)− δ

√
α (since ψ is independent of B),

and this holds for all 0 < δ < ζ(y0). Therefore, one can conclude that

lim inf
B→+∞

c∗Ω,A,0,Bf (e)√
B

≥ 2
√
α
√
ζ(y0). (2.8.56)
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Finally, the inequalities (2.8.52) and (2.8.56) imply that lim
B→+∞

c∗Ω,A,0,Bf (e)√
B

exists,

and it is equal to 2
√
α
√
ζ(y0) = 2

√
max
ω

eA(y)e
√

max
ω

ζ(y).

The above proof was done while assuming that the alternative (2.3.7) holds. The
same ideas of this proof can be easily applied in the case where alternative (2.3.8)
holds. In (2.3.8), we have ζ is constant; however, eAe is not in general. Meanwhile
the converse is true in the case (2.3.7). The little difference is that, in the case of
(2.3.8), we chsose the subset U (of the proof done above) around the point y0 where
eAe attains its maximum and then we continue by the same way used above. �

Proof of Theorem 2.5.2. According to Theorem 3.1.11, and since ν · Aẽ = 0 on
∂Ω, the minimal speeds c∗

Ω,A,Bγ q, Bf (e) are given by:

∀B > 0, c∗
Ω,A,Bγ q, Bf (e) = min

λ>0

k
Ω,e, A, Bγ q, Bζ (λ)

λ
,

where k
Ω,e, A, Bγ q, Bζ (λ) and ψλ,B denote the unique eigenvalue and the positive L-

periodic eigenfunction of the problem

∇ · (A∇ψλ,B)− 2λẽ · A∇ψλ,B +Bγq · ∇ψλ,B +
[
λ2 ẽAẽ− λBγq · ẽ+ B ζ

]
ψλ,B

= k
Ω,e, A, Bγ q, Bζ (λ) ψλ,B in Ω, with ν · A∇ψ = ν · A∇ψλ,B = 0 on ∂Ω.

For each λ > 0 and B > 0, let λ ′ = λ/
√
B, and let k

Ω,e, A, Bγ q, Bζ (λ) = µ(λ
′
, B).

Consequently,

∀B > 0,
c∗

Ω,A,Bγ q, Bf (e)
√
B

= min
λ ′>0

µ(λ
′
, B)

λ ′ B
, (2.8.57)

where µ(λ
′
, B) and ψλ

′
,B are the first eigenvalue and the unique, positive L−periodic

(with respect to x) eigenfunction of

∇ · (A∇ψλ
′
,B)− 2λ′

√
Bẽ · A∇ψλ

′
,B +Bγq · ∇ψλ

′
,B

+
[
λ
′2
B ẽAẽ− λ′B

γ+ 1
2 q · ẽ+ Bζ

]
ψλ
′
,B = µ(λ

′
, B)ψλ

′
,B in Ω,

(2.8.58)

with ν · A∇ψλ
′
,B = 0 on ∂Ω.

Owing to the uniqueness, up to multiplication by positive constants, of the first
eigenfunction of (2.8.58), one may assume that:

∀λ′ > 0, ∀B > 0, ||ψλ
′
,B||L2(C) = 1. (2.8.59)
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Moreover, for each B > 0, min
λ ′>0

µ(λ
′
, B)

λ ′ B
is attained at λ ′B > 0. Thus,

∀B > 0,
c∗

Ω,A,Bγ q, Bf (e)
√
B

= min
λ ′>0

µ(λ
′
, B)

λ ′ B
=
µ(λ

′
B, B)

B λ
′
B

. (2.8.60)

Having the above characterization, one can now imitate the steps 2 and 3 in the
proof of Theorem 2.4.1 to prove that

lim inf
B→0+

c∗
Ω,A,Bγ q, Bf (e)/

√
B

(resp. lim sup
B→0+

c∗
Ω,A,Bγ q, Bf (e)/

√
B ) is greater than (resp. less than)

2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy;

and hence, complete the proof of Theorem 2.5.2. �

2.8.4 Proofs of Theorems 2.6.1, 2.6.3, and 2.6.5

Proof of Theorem 2.6.1. Referring to Theorem 3.1.11, it follows that for each
β > 0, we have:

c∗
Ω,βA,

√
β q,f

(e)
√
β

= min
λ>0

kΩ,e, βA,
√
β q,ζ(λ)

λ
√
β

,

where kΩ,e, βA,
√
β q,ζ(λ) is the first eigenvalue of the problem{

LΩ,e, βA,
√
β q,ζ,λψ(x, y) = kΩ,e, βA,

√
β q,ζ(λ)ψ(x, y) over R× ω;

ν.A∇ψ = 0 on R × ∂ω,
(2.8.61)

where

LΩ,e,βA,
√
β q,ζ,λ ψ = β∇ · (A(y)∇ψ)− 2βλα(y) ∂xψ +

√
β q1(y)∂xψ

+
[
β λ2eA(y)e − λ

√
β q1(y) + ζ(y)

]
ψ over R× ω.

The boundary condition follows so from the facts that Ω = R× ω, e = (1, 0, . . . , 0)

and that A(y)e = α(y)e over ω. These yield that ν · Ae = 0 over ∂Ω and ∇ · Ae = 0.

Moreover, for each (x, y) ∈ ∂Ω, we have ν(x, y) = (0; νω(y)), where νω(y) is the outward
unit normal on ∂ω at y.
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On the other hand, the function ψ is positive , (L1, . . . , Ld)−periodic with respect to
y, and unique up to multiplication by non-zero constants. Meanwhile, the coefficients
A, q and ζ are independent of x. Thus the eigenfunction ψ will be independent of x
and our eigenvalue problem is reduced to

β∇ · (A(y)∇ψ(y)) +
[
β λ2eA(y)e − λ

√
βq1(y) + ζ(y)

]
ψ(y)

= kΩ,e, βA,
√
βq,ζ(λ)ψ(y) for all y ∈ ω,

ν(x, y) · A(y)∇ψ(y) = (0; νω(y)) · A(y)∇ψ(y) = 0 on R× ∂ω.

(2.8.62)

For each λ > 0 and β > 0, let λ′ = λ
√
β, and let kΩ,e, βA,

√
β q,ζ(λ) = µ(λ

′
, β). Since

for each β > 0, min
λ>0

kΩ,e, βA,
√
β q,ζ(λ)

λ
is attained at λ(β), it follows that

∀ β > 0,
c∗

Ω,βA,
√
β q,f

(e)
√
β

= min
λ′>0

µ(λ
′
, β)

λ′
, (2.8.63)

where µ(λ
′
, β) is the first eigenvalue of the problem: Lβ

λ′
ψ = β∇ · (A(y)∇ψ) +

[
λ
′2
eA(y)e− λ′q1(y) + ζ(y)

]
ψ = µ(λ

′
, β)ψ in ω,

ν · A∇ψ = 0 on ∂ω.
(2.8.64)

The elliptic operator Lβ
λ′
in (2.8.64) is self-adjoint. Consequently, the first eigenvalue

µ(λ
′
, β) has the following characterization: 3

∀λ′ > 0, ∀β > 0, −µ(λ
′
, β) =

min
ϕ∈H1(C)\{0}

β

∫
C

∇ϕ · A(y)∇ϕdy + λ
′
∫
C

q1(y)ϕ2 −
∫
C

[
λ
′2
eA(y)e+ ζ(y)

]
ϕ2(y)dy∫

C

ϕ2(y)dy

= min
ϕ∈H1(C)\{0}

R(λ
′
, β, ϕ).

(2.8.65)

For each λ′ and β > 0, ϕ 7→ R(λ
′
, β, ϕ) attains its minimum over H1(C) \ {0} at

ψλ
′
,β, the eigenfunction of the problem (2.8.64). On the other hand, β 7→ R(λ

′
, β, ϕ)

is increasing as an affine function in β. Consequently, fixing λ′ > 0 and taking β >

3. To have an idea, multiply (2.8.64) by the positive, (L1, . . . , Ld)−periodic function ψ and integrate
by parts over the periodicity cell C of the the domain ω.
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β
′
> 0 :

−µ(λ
′
, β) = R(λ

′
, β, ψλ

′
,β) > R(λ

′
, β
′
, ψλ

′
,β)

≥ min
ϕ∈H1(C)\{0}

R(λ
′
, β
′
, ϕ) = −µ(λ

′
, β
′
).

(2.8.66)

In other words, for all λ′ > 0, the function β 7→ µ(λ
′
, β) is decreasing. Concerning

now the function β 7→ c∗Ω,βA,
√
β q,f (e)/

√
β, one takes randomly β > β

′
> 0, hence

c∗
Ω,β ′A,

√
β ′ q,f

(e)√
β ′

=
µ(λ

′
(β
′
), β

′
)

λ′(β ′)
>
µ(λ

′
(β
′
), β)

λ′(β ′)

≥ min
λ′>0

µ(λ
′
, β)

λ′
=
c∗

Ω,βA,
√
β q,f

(e)
√
β

,

which means that the function β 7→ c∗Ω,βA,
√
β q,f (e)/

√
β is decreasing.

Finally, when β → +∞, one can easily check that the hypothesis of Theorem 2.4.1
are satisfied; hence, one has the limit at +∞, and that completes the proof of Theorem
2.6.1. �

Proof of Theorem 2.6.3. Consider the change of variables v(t, x, y) = u(t, Lx, Ly),

for any (t, x, y) ∈ R× RN . One consequently has,

∀L > 0, c∗RN ,A
L
, q

L
, f

L

(e) = L c∗RN , 1

L
2 A,

1
L
q,f

(e). (2.8.67)

Taking β = 1/L
2

, then

vt(t, x, y) = β∇ · (A(y)∇v)(t, x, y) +
√
β q1(y) ∂x v(t, x, y) + f(x, y, v) over R× RN .

Owing to Theorem 2.6.1, the function β 7→ c∗
RN ,βA,

√
β q, f

(e)/
√
β is decreasing in

β > 0. Besides, L 7→ 1/L2 is decreasing in L > 0. Together with (2.8.67), one obtains
that the function L 7→ c∗RN ,A

L
, q

L
, f

L

(e) is increasing in L > 0 which completes the
proof of Theorem 2.6.3. �

Proof of Theorem 2.6.5. Referring to Theorem 3.1.11, it follows that for each
B > 0, we have:

c∗
Ω,A,

√
B q,Bf

(e)
√
B

= min
λ>0

kΩ,e, A,
√
B q,Bζ(λ)

λ
√
B

.

Owing to the same justifications explained in the proof of Theorem 2.6.1, kΩ,e,A,
√
Bq,Bζ(λ)
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is the first eigenvalue of the problem ∇ · (A(y)∇ψ(y)) +
[
λ2e · Ae− λ

√
Bq1(y) +Bζ(y)

]
ψ(y) = kΩ,e,A,

√
Bq,Bζ(λ)ψ in ω,

ν(x, y) · A(y)∇ψ(y) = (0; νω(y)) · A(y)∇ψ(y) = 0 on R× ∂ω.
(2.8.68)

For each λ > 0 and B > 0, let λ′ = λ/
√
B and kΩ,e, A,

√
B q,Bζ(λ) = µ(λ

′
, B). The

first eigenvalue µ(λ
′
, B) has the following characterization:

∀λ′ > 0, ∀B > 0, − µ(λ
′
, B)

λ′B
=

min
ϕ ∈ H1(C) \ {0};
||ϕ||L2 (C) = 1

∫
C

∇ϕ · A(y)∇ϕdy

λ′B
+

∫
C

q1ϕ
2 − λ′

∫
C

eAeϕ2 −

∫
C

ζ(y)ϕ2(y) dy

λ′

= min
ϕ ∈ H1(C) \ {0}
||ϕ||L2 (C) = 1

R(λ
′
, B, ϕ).

(2.8.69)

On the other hand, B 7→ R(λ
′
, B, ϕ) is decreasing in B > 0. Consequently, fixing

λ
′
> 0 and taking 0 < B < B

′
,

− µ(λ
′
, B)

λ′B
= R(λ

′
, B, ψλ

′
,B) > R(λ

′
, B

′
, ψλ

′
,B) ≥ min

ϕ ∈ H1(C) \ {0};
||ϕ||L2 (C) = 1

R(λ
′
, B

′
, ϕ)

= − µ(λ
′
, B

′
)

λ′B′
.

In other words, for all λ′ > 0, the function B 7→ µ(λ
′
, B)/λ

′
B is increasing in B > 0.

Now, we take randomly 0 < B < B
′
. Thus,

c∗
Ω,A,
√
B ′ q,B ′f

(e)
√
B′

= min
λ′>0

µ(λ
′
, B

′
)

λ′B′
=
µ(λ

′

B′
, B

′
)

λ
′

B′
×B′

>
µ(λ

′

B′
, B)

λ
′

B′
×B

≥ min
λ′>0

µ(λ
′
, B)

λ′B
=
c∗

Ω,A,
√
B q,Bf

(e)
√
B

,

which means that B 7→ c∗
Ω,A,

√
B q,Bf

(e)/
√
B is increasing in B > 0. �
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2.9 Applications to homogenization problems

The reaction-advection-diffusion problem set in a heterogenous periodic domain Ω

satisfying (3.1.2) generates a homogenization problem:
Let e ∈ Rd be a vector of unit norm. Assume that Ω, A, q, and f are (L1, . . . , Ld)−

periodic and that they satisfy (3.1.2), (3.1.3), (3.1.4), (2.2.4) and (4.1.5).
For each ε > 0, let Ωε = εΩ and consider the following re-scales:

∀(x, y) ∈ Ωε, Aε(x, y) = A
(x
ε
,
y

ε

)
, qε(x, y) = q

(x
ε
,
y

ε

)
, and fε(x, y) = f

(x
ε
,
y

ε

)
.

The coefficientsAε, qε, and fε together with the domain Ωε are (εL1, . . . , ε Ld)−periodic,
and they satisfy similar properties to those of A, q, f and Ω.

Consider the parametric reaction-advection-diffusion problem

(Pε)


uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u

ε), t ∈ R, (x, y) ∈ Ωε,

νε · Aε ∇uε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ωε,

where νε(x, y) denotes the outward unit normal on ∂Ωε at the point (x, y).

Owing to the results found by Berestycki and Hamel in section 6 of [2], and since
the coefficients Aε, fε and qε together with the domain Ωε satisfy all the necessary
assumptions, it follows that the problem (Pε) admits a minimal speed of propagation
c∗Ωε, Aε, qε,fε(e) > 0 such that (Pε) has a solution uε in the form of a pulsating front
within a speed c if and only if c ≥ c∗Ωε, Aε, qε,fε(e) > 0.

In this section, we investigate the limit of the parametric minimal speeds c∗Ωε, Aε, qε,fε(e)
(whose parameter is ε) of the problems (Pε)ε>0 as ε → 0+. In other words, we search
the limit of these minimal speeds as the periodicity cell Cε = εC becomes a very
small size. On the other hand, we study although not the most general setting, the
variation of the map ε 7→ c∗Ωε, Aε, qε,fε(e) in ε > 0.

Theorem 2.9.1 Let e ∈ Rd be a unit vector, and let Ω ⊆ RN be a domain which
is L−periodic and satisfying (3.1.2). Assume that A = A(x, y), q = q(x, y), and
f = f(x, y, u) are L−periodic and that they satisfy (3.1.3), (3.1.4), (2.2.4) and (4.1.5)
together with the assumptions ∇.Aẽ ≡ 0 on Ω and ν.Aẽ = 0 on ∂Ω. For each ε > 0,

consider the problem{
uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u

ε), t ∈ R, (x, y) ∈ Ωε,

νε · Aε ∇uε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ωε,
(2.9.1)
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where Aε, fε and qε are the coefficients defined in the beginning of this section. Then,
the minimal speed c ∗Ωε, Aε, qε, fε

(e) of pulsating travelling fronts propagating in the
direction of e and solving (2.9.1) satisfies

lim
ε→0+

c ∗Ωε, Aε, qε, fε
(e) =2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy, (2.9.2)

where C is the periodicity cell of Ω and ẽ = (e, 0, · · · , 0) ∈ RN .

Proof. As a first notice, we mention that the domain Ωε is the image of Ω by the
a dilation whose center is the origin O(0, . . . , 0) and whose scale factor is equal to ε.
Consequently,

for each ε > 0, (εx, εy) ∈ Ωε if and only if (x, y) ∈ Ω, and

(εx, εy) ∈ ∂Ωε if and only if (x, y) ∈ ∂Ω.

Moreover,
∀ε > 0, ∀(x, y) ∈ ∂Ω, νε(εx, εy) = ν(x, y).

Consider now, for each ε > 0, the following change of variables

vε(t, x, y) = uε(t, εx, εy) ; (t, x, y) ∈ R× Ω.

One gets
∀(t, x, y) ∈ R× Ω, vεt (t, x, y) = uεt(t, εx, εy),

∇x,y · (A(x, y)∇vε)(t, x, y) = ∇x,y · (Aε∇uε)(t, εx, εy) = ε2∇ · (Aε∇uε)(t, εx, εy),

and

νε(εx, εy) · [Aε∇uε] (t, εx, εy) = ν(x, y) · A
(εx
ε
,
εy

ε

)
∇uε(t, εx, εy)

=
1

ε
ν(x, y) · A(x, y)∇vε(t, x, y) on R× ∂Ω.

(2.9.3)

The boundary condition in (2.9.1) yields that νε(εx, εy) · [Aε∇uε] (t, εx, εy) = 0, for all
(t, x, y) ∈ R× ∂Ω (which is equivalent to say: for all (t, εx, εy) ∈ R× ∂Ωε). It follows
from (2.9.3) that

∀(t, x, y) ∈ R× ∂Ω, ν · A∇vε(t, x, y) = 0.

One can now conclude that: for each ε > 0, uε satisfies (2.9.1) if and only if vε
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satisfies vεt (t, x, y) =
1

ε2
∇ · (A∇vε)(t, x, y) +

1

ε
q · ∇vε + f(x, y, vε), t ∈ R, (x, y) ∈ Ω,

ν · A ∇vε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.
(2.9.4)

Having the assumptions (3.1.2), (3.1.3), (3.1.4), (2.2.4), and (4.1.5) on Ω, A, q, and
f, one gets that problem (2.9.4) admits, for each ε > 0, a minimal speed of propagation
denoted by c∗

Ω, ( 1
ε)

2
A, 1

ε
q, f

(e).

Moreover, due to the change of variables between uε and vε, it follows that for each
ε > 0, uε is a pulsating travelling front propagating in the direction of e within a speed
c and solving (2.9.1) if and only if vε is a pulsating travelling front propagating in the
direction of e within a speed

c

ε
and solving (2.9.4). This yields that

∀ε > 0, c ∗Ωε, Aε, qε, fε
(e) = ε c∗

Ω, ( 1
ε)

2
A, 1

ε
q, f

(e) = c∗
Ω,MA,

√
M q, f

(e)/
√
M, (2.9.5)

where M = ( 1/ε )2.

As ε→ 0+, the variable M → +∞. Applying Theorem 2.4.1, with γ =
1

2
, one gets

that

lim
M→+∞

c∗
Ω,MA,

√
M q, f

(e)
√
M

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy.

Therefore, lim
ε→0+

c ∗Ωε, Aε, qε, fε
(e) = 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy, and the

proof of Theorem 2.9.1 is complete. �

Remark 2.9.2 It is worth noticing that, in formula 2.9.2, the homogenized speed de-
pends on the averages of the diffusion and reaction coefficients, but it does not depend
on the advection.

We move now to study the variation of the map ε 7→ c ∗Ωε, Aε, qε, fε
(e) with respect

to ε > 0. In other words, we want to check the monotonicity behavior of the parametric
minimal speed of propagation, whose parameter ε > 0, as the periodicity cell of the
domain of propagation shrinks or enlarges within a ratio ε. In this study, we will
consider the same situation of Theorem 2.6.1 and also the same notations introduced
in the beginning of section 2.9:

Theorem 2.9.3 Let e = (1, 0 . . . , 0). Assume that Ω has the form R×ω where ω may
or may not be bounded (precisely described in section 2.3) and that the diffusion matrix
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A = A(y) satisfies (2.3.5) together with the assumption that e is an eigenvector of A(y)

for all y ∈ ω, that is

A(x, y)e = A(y)e = α(y)e, for all (x, y) ∈ R× ω; (2.9.6)

where y 7→ α(y) is a positive (L1, . . . , Ld)− periodic function defined over ω. The
nonlinearity f is assumed to satisfy (2.3.3) and (2.3.4). Assume further more that
the advection field q (when it exists) is in the form q(x, y) = (q1(y), 0, . . . , 0) where q1

has a zero average over C, the periodicity cell of ω. For ε > 0 consider the reaction-
advection-diffusion problem

∀ t ∈ R, ∀ (x, y) ∈ Ωε = R× ε ω,
uεt(t, x, y) = ∇ · (Aε∇uε)(t, x, y) + qε · ∇uε + fε(x, y, u

ε);

νε · Aε ∇uε(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ωε.

(2.9.7)

Then, the map ε 7→ c ∗Ωε, Aε, qε, fε
(e) is increasing in ε > 0.

Proof of Theorem 2.9.3. For each ε > 0, we consider the change of variables

vε(t, x, y) = uε(t, εx, εy) ; (t, x, y) ∈ R× Ω.

Owing to the justifications shown in the proof of Theorem 2.9.1, one consequently
obtains

∀ε > 0, c ∗Ωε, Aε, qε, fε
(e) = ε c∗

Ω, ( 1
ε)

2
A, 1

ε
q, f

(e) = c∗Ω, βA,
√
β q, f (e)/

√
β, (2.9.8)

where β(ε) = ( 1/ε )2.

Applying Theorem 2.6.1, it follows that the map η1 : β 7→ c∗Ω, βA,
√
β q, f (e)/

√
β is

decreasing in β > 0. On the other hand, the map η2 : ε 7→ β(ε) is also decreasing in
ε > 0. Therefore, ε 7→ c ∗Ωε, Aε, qε, fε

(e), which is the composition η1 ◦ η2 , is increasing
in ε > 0 and this completes our proof. �

Other homogenization results, concerning reaction-advection-diffusion problems,
were given in the case of a combustion-type nonlinearity f = f(u) satisfying{
∃ θ ∈ (0, 1), f(s) = 0 for all s ∈ [0, θ] , f(s) > 0 for all s ∈ (θ, 1), f(1) = 0,

∃ρ ∈ (0, 1− θ), f is non-increasing on [1− ρ, 1] .
(2.9.9)
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Consider the equation

uεt(t, x) = ∇ · (A(ε−1 x)∇uε) + ε−1q(ε−1 x) · ∇uε + f(uε) in RN , (2.9.10)

where the nonlinearity f satisfies (2.9.9), and the drift and diffusion coefficients q and
A satisfy the general assumptions (3.1.3) and (3.1.4), with periodicity 1 in all variables
x1, . . . , xN . Fix a unit vector e of RN . From Berestycki and Hamel [2], it follows that
for each ε > 0, problem (2.9.10) admits a unique pulsating front (cε, u

ε) such that

uε(t, x) = φε(x · e+ cεt, x)

where φε(s, x) is (ε, . . . , ε)−periodic in x that satisfies φε(−∞, .) = 0 and φε(+∞, .) =

1. The functions uε are actually unique up to shifts in time, and one can assume that
max
RN

φε(0, .) = θ.

Concerning problem (2.9.10), Heinze [15] proved that

as ε→ 0+, cε → c0 > 0, and uε(t, x)→ u0(x · e+ c0t) weakly in H1
loc,

where (c0, u0) is the unique solution of the one-dimensional homogenized equation{
a∗ u

′′
0 − c0u

′
0 + f(u0) = 0 in R,

u0(−∞) = 0 < u0 < u0(+∞) = 1 in R, u0(0) = θ
(2.9.11)

and a∗ is a positive constant determined in [15].
In Theorem 1 of Caffarelli, Lee, Mellet [10], the homogenization limit was combined

with the singular high activation limit for the reaction (one can also see [11] in this con-
text) while the diffusion matrix was taken A = IdRN . More precisely, the nonlinearity

had the form fε(u) =
1

ε
β(
u

ε
) with β(s) a Lipschitz fucntion satisfying

β(s) > 0 in (0, 1) and β(s) = 0 otherwise.

These nonlinearities approach a Dirac mass at u = 1.

2.10 Open problems

In all the results of this paper, we deal with nonlinearities of the “KPP” type. In
the periodic framework of this paper, pulsating travelling fronts exist also with other
types of nonlinearities (see Theorems 1.13 and 1.14 in [2]). Namely, they exist when
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f = f(x, y, u) is of the “combustion” type satisfying:


f is globally Lipschitz-continuous in Ω× R,
∀ (x, y) ∈ Ω, ∀ s ∈ (−∞, 0] ∪ [1,+∞), f(s, x, y) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1− ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′),

(2.10.1)

and


f is L−periodic with respect to x,
∃ θ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ s ∈ [0, θ], f(x, y, s) = 0,

∀ s ∈ (θ, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,
(2.10.2)

or when f = f(x, y, u) is of the “ZFK” (for Zeldovich-Frank- Kamenetskii) type satis-
fying (2.10.1) and


f is L−periodic with respect to x,
∃δ > 0, the restriction of f to Ω × [0, 1] is of class C1, δ,

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0.
(2.10.3)

In particular, the “KPP” nonlinearities are of the “ZFK” type.

Recently, El Smaily [12] gave min−max and max−min formulæ for the speeds
of propagation of problem (4.1.8) taken with a “ZFK” or a “combustion” nonlinearity.
These formulæ, together with the results of this paper, can give important estimates for
the parametric minimal speeds of the problem (4.1.8) when f is a “ZFK” nonlinearity
which is not of the “KPP” type. Indeed, if f is a “ZFK” nonlinearity, one can find a
“KPP” function h = h(x, y, u) such that

∀(x, y, u) ∈ Ω× R, f(x, y, u) ≤ h(x, y, u).

Referring to formula (1.17) in El Smaily [12], one can conclude that

∀M > 0,∀B > 0, ∀γ ∈ R, c∗
Ω,MA,Mγ q, Bf (e) ≤ c∗

Ω,MA,Mγ q, Bh(e).

Moreover, if f is a “ZFK” nonlinearity satisfying the additional assumption

∀(x, y) ∈ Ω, f ′u(x, y, 0) > 0, (2.10.4)
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then one can find a “KPP” function g = g(x, y, u) such that g ≤ f in Ω× R, and thus

∀M > 0,∀B > 0, ∀γ ∈ R,

c∗
Ω,MA,Mγ q, Bg(e) ≤ c∗

Ω,MA,Mγ q, Bf (e) ≤ c∗
Ω,MA,Mγ q, Bh(e).

(2.10.5)

As a consequence, under the assumptions that 0 ≤ γ ≤ 1/2, ν · Aẽ = 0 on ∂Ω, and
∇ · Aẽ ≡ 0 in Ω, Theorem 2.4.1 implies that

lim sup
M→+∞

c∗Ω,MA,Mγq, f (e)√
M

≤ 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

g′u(x, y, 0)dx dy, (2.10.6)

and

lim inf
M→+∞

c∗Ω,MA,Mγq, f (e)√
M

= 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

h′u(x, y, 0)dx dy > 0. (2.10.7)

If f is a “combustion” nonlinearity, then problem (4.1.8) admits a solution (c, u)

where c = c
Ω,A,q,f

(e) > 0 is unique and u = u(t, x, y) is increasing in t and it is unique
up to a translation in t. Taking g as a “KPP” nonlinearity such that g ≥ f in Ω × R
and using Theorem 2.4.1, it follows that

lim sup
M→+∞

c
Ω,MA,Mγ q, f

(e)
√
M

≤ 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

g′u(x, y, 0)dx dy

together with lim inf
M→+∞

c
Ω,MA,Mγ q, f

(e)
√
M

≥ 0.

(2.10.8)

Similarly, one can get several estimates concerning the case of a small diffusion fac-
tors, small (resp. large) reaction factors, or small (resp. large) periodicity parameters.

The above motivation gives several upper and lower estimates for the parametric
speeds of propagation. However, the exact limits are not known. This leads us to ask
about the asymptotics of the minimal speeds of propagation with respect to diffusion,
reaction and periodicity factors in the “ZFK” case and about the asymptotics of the
unique parametric speed of propagation in the “combustion” case. These studies should
help, as it was done in section 2.9, in solving some homogenization problems in the
“ZFK” case.

Besides, Theorem 2.9.1 gives the limit of c ∗Ωε, Aε, qε, fε
(e) as ε → 0+. However,

finding the homogenized equation of (2.9.1) in the “KPP” remains an open problem.
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2.11 Conclusions

As we mentioned in the beginning of this paper, our first aim was to give a complete
and rigorous analysis of the minimal speed of propagation of pulsating travelling fronts
solving parametric heterogeneous reaction-advection-diffusion equations in a periodic
framework. In the paper of Berestycki, Hamel and Nadirashvili [3], several upper
and lower estimates for the parametric minimal speed of propagation were given (see
Theorems 1.6 and 1.10 in [3]). However, the exact asymptotic behaviors of the minimal
speed with respect to diffusion and reaction factors and with respect to the periodicity
parameter L were not given there. In this paper, we determined the exact asymptotes
of the minimal speed in the “KPP” periodic framework. In sections 2.3, 2.4 and 2.5,
we proved that (under some assumptions on A, q, f and Ω) the asymptotes of the
parametric minimal speed are either

2
√

max
ω

ζ
√

max
ω

eAe or 2

√
−
∫
C

ẽAẽ(x, y)dx dy

√
−
∫
C

ζ(x, y)dx dy.

(see Theorems 2.3.1, 2.3.4, 2.4.1, 2.4.3, 2.5.1 and 2.5.2 above). Moreover, we found
in section 2.3 that the presence of an advection field, in the general form or in the
form of shear flows, changes the asymptotic behavior of the minimal speed within
a small diffusion (see Theorem 2.3.3 and Remark 2.3.6). Conversely, we proved in
section 4 that the presence of a general advection field Mγq (where q satisfies (3.1.4))

has no effect on lim
M→+∞

c∗
Ω,MA,Mγ q, f (e)

√
M

whenever 0 ≤ γ ≤ 1/2 (see Theorem 2.4.1).

Furthermore, we studied, in a particular periodic framework, the variations of the maps

β 7→
c∗

Ω,βA,
√
β q,f

(e)
√
β

and L 7→ c∗RN ,A
L
, q
L
,f
L

(e) and B 7→
c∗

Ω,A,
√
B q,Bf

(e)
√
B

with respect to

the positive variables β, L and B respectively. Roughly speaking, we found that the
first and the third maps have opposite senses of variations (see Theorems 2.6.1 and
2.6.5). On the other hand, Theorem 2.6.3 and Theorem 2.9.3 yield that the minimal
speed increases when the medium undergoes a dilation whose scale factor is greater
than 1.

The second aim was to find the homogenized “KPP” minimal speed. We achieved
this goal in section 2.9 (Theorem 2.9.1) under the assumptions of free divergence on
A(x, y)ẽ and invariance of the domain in the direction A(x, y)ẽ. This was an application
to the results obtained in section 2.4. The found homogenized speed should play an
important role in finding the homogenized reaction-advection-diffusion equation in the
“KPP” case. In a forthcoming paper [13], we find also the homogenized speed in the one
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dimensional case but in a more general setting (in fact, the assumption of divergence
free is equivalent to the assumption that the diffusion term x 7→ a(x) is constant over
R in the case N = 1).

All the mathematical results obtained in this paper can be applied to study some
spreading phenomena. Referring to the results of Weinberger [30], one can conclude
that the spreading speed is equal to the “KPP” minimal speed of propagation in the pe-
riodic framework under some assumptions on the initial data u0 := u0(x, y) = u(0, x, y)

which is defined on a periodic domain Ω of RN . In such a setting, all our results can be
applied to give rigorous answers on the asymptotic behavior of the parametric spreading
speed with respect to diffusion and reaction factors and with respect to the periodicity
parameter.
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CHAPTER 3

Min-Max formulæ for the speeds of pulsating

travelling fronts in periodic excitable media

Mohammad El Smaily 1

Université Aix-Marseille III, LATP, Faculté des Sciences et Techniques,
Avenue Escadrille Normandie-Niemen, F-13397 Marseille Cedex 20, France.

Abstract. This paper is concerned with some nonlinear propagation phenomena for
reaction-advection-diffusion equations in a periodic framework. It deals with travelling
wave solutions of the equation

ut = ∇ · (A(z)∇u) + q(z) · ∇u+ f(z, u), t ∈ R, z ∈ Ω,

propagating with a speed c. In the case of a “combustion” nonlinearity, the speed c

exists and it is unique, while the front u is unique up to a translation in t. We give a
min−max and a max−min formula for this speed c. On the other hand, in the case
of a “ZFK” or a “KPP” nonlinearity, there exists a minimal speed of propagation c∗. In
this situation, we give a min−max formula for c∗.

1. E-mail: mohammad.el-smaily@etu.univ-cezanne.fr
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3.1 Introduction and main results

3.1.1 A description of the periodic framework

The goal of this paper is to give some variational formulæ for the speeds of pul-
sating travelling fronts corresponding to reaction-diffusion-advection equations set in
a heterogenous periodic framework. In fact, many works, such as Hamel [7], Heinze,
Papanicolaou, Stevens [10], and Volpert, Volpert, Volpert [17] treated this problem in
simplified situations and under more strict assumptions. In this paper, we treat the
problem in the most general periodic framework. We are concerned with equations of
the type

{
ut = ∇ · (A(z)∇u) + q(z) · ∇u+ f(z, u), t ∈ R, z ∈ Ω,

ν · A ∇u(t, z) = 0, t ∈ R, z ∈ ∂Ω,
(3.1.1)

where ν(z) is the unit outward normal on ∂Ω at the point z. In this context, let us
detail the mathematical description of the heterogeneous setting.

Concerning the domain, let N ≥ 1 be the space dimension, and let d be an integer
so that 1 ≤ d ≤ N. For an element z = (x1, x2, · · · , xd, xd+1, · · · , xN) ∈ RN , we denote
by x = (x1, x2, · · · , xd) and by y = (xd+1, · · · , xN) the two tuples so that z = (x, y).

Let L1, · · · , Ld be d positive real numbers, and let Ω be a C3 non empty connected
open subset of RN satisfying

∃R ≥ 0 ;∀ (x, y) ∈ Ω, |y| ≤ R,

∀ (k1, · · · , kd) ∈ L1Z× · · · × LdZ, Ω = Ω +
d∑

k=1

kiei,
(3.1.2)

where (ei)1≤i≤N is the canonical basis of RN .

As d ≥ 1, one notes that the set Ω satisfying (3.1.2) is unbounded. We have
many archetypes of such a domain. The case of the whole space RN corresponds to
d = N, where L1, . . . , LN are any positive numbers. The case of the whole space RN

with a periodic array of holes can also be considered. The case d = 1 corresponds to
domains which have only one unbounded dimension, namely infinite cylinders which
may be straight or have oscillating periodic boundaries, and which may or may not
have periodic perforations. The case 2 ≤ d ≤ N − 1 corresponds to infinite slabs.

In this periodic situation, we give the following definitions:
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Definition 3.1.1 (Periodicity cell) The set

C = { (x, y) ∈ Ω; x1 ∈ (0, L1), · · · , xd ∈ (0, Ld)}

is called the periodicity cell of Ω.

Definition 3.1.2 (L-periodic fields) A field w : Ω → RN is said to be L-periodic
with respect to x if

w(x1 + k1, · · · , xd + kd , y) = w(x1, · · · , xd, y)

almost everywhere in Ω, and for all k = (k1, · · · , kd) ∈
d∏
i=1

LiZ.

Let us now detail the assumptions concerning the coefficients in (3.1.1). First, the
diffusion matrix A(x, y) = (Aij(x, y))1≤i,j≤N is a symmetric C2,δ( Ω ) (with δ > 0)
matrix field satisfying

A is L−periodic with respect to x,

∃ 0 < α1 ≤ α2; ∀(x, y) ∈ Ω,∀ ξ ∈ RN ,

α1|ξ|2 ≤
∑

1≤i,j≤N

Aij(x, y)ξiξj ≤ α2|ξ|2.
(3.1.3)

The underlying advection q(x, y) = (q1(x, y), · · · , qN(x, y)) is a C1,δ(Ω) (with δ > 0)
vector field satisfying: 

q is L−periodic with respect to x,

∇ · q = 0 in Ω ,

q · ν = 0 on ∂Ω ,

∀ 1 ≤ i ≤ d,

∫
C

qi dx dy = 0.

(3.1.4)

Lastly, let f = f(x, y, u) be a function defined in Ω× R such that
f is globally Lipschitz-continuous in Ω× R,

∀ (x, y) ∈ Ω, ∀ s ∈ (−∞, 0] ∪ [1,+∞), f(s, x, y) = 0,

∃ ρ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ 1− ρ ≤ s ≤ s′ ≤ 1, f(x, y, s) ≥ f(x, y, s′).

(3.1.5)
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One assumes that
f is L−periodic with respect to x. (3.1.6)

Moreover, the function f is assumed to be of one of the following two types: either{
∃ θ ∈ (0, 1), ∀(x, y) ∈ Ω, ∀ s ∈ [0, θ], f(x, y, s) = 0,

∀ s ∈ (θ, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0,
(3.1.7)

or {
∃ δ > 0, the restriction of f to Ω × [0, 1] is of class C1, δ,

∀ s ∈ (0, 1), ∃ (x, y) ∈ Ω such that f(x, y, s) > 0.
(3.1.8)

Definitions 3.1.3 A nonlinearity f satisfying (3.1.5), (3.1.6) and (3.1.7) is called a
“combustion” nonlinearity. The value θ is called the ignition temperature.
A nonlinearity f satisfying (3.1.5), (3.1.6), and (3.1.8) is called a “ZFK” (for Zeldovich-
Frank- Kamenetskii) nonlinearity.
If f is a “ZFK” nonlinearity that satisfies

f ′u(x, y, 0) = lim
u→0+

f(x, y, u)/u > 0, (3.1.9)

with the additional assumption

∀ (x, y, s) ∈ Ω× (0, 1), 0 < f(x, y, s) ≤ f ′u(x, y, 0)× s, (3.1.10)

then f is called a “KPP”(for Kolmogorov, Petrovsky, and Piskunov, see [12]) nonlin-
earity.

The simplest examples of “combustion” and “ZFK” nonlinearities are when f(x, y, u) =

f(u) where: either
f is Lipschitz-continuous in R,
∃ θ ∈ (0, 1), f(s) = 0 for all s ∈ (−∞, θ] ∪ [1,+∞),

and f(s) > 0 for all s ∈ (θ, 1),

∃ ρ ∈ (0, 1− θ), f is non-increasing on [1− ρ, 1],

(3.1.11)

or

86



3.1. Introduction and main results


f is defined on R, f ≡ 0 in R \ (0, 1),

∃ δ > 0, the restriction of f on the interval [0, 1] is C1,δ([0, 1]),

f(0) = f(1) = 0, and f(s) > 0 for all s ∈ (0, 1),

∃ ρ > 0, f is non-increasing on [1− ρ, 1].

(3.1.12)

If f = f(u) satisfies (3.1.11), then it is a homogeneous “combustion” nonlinearity.
On the other hand, a nonlinearity f = f(u) that satisfies (3.1.12) is homogeneous of
the “ZFK” type. Moreover, a KPP homogeneous nonlinearity is a function f = f(u)

that satisfies (3.1.12) with the additional assumption

∀ s ∈ (0, 1), 0 < f(s) ≤ f ′(0) s. (3.1.13)

As typical examples of nonlinear heterogeneous sources satisfying (3.1.5-3.1.6) and
either (3.1.7) or (3.1.8), one can consider the functions of the type

f(x, y, u) = h(x, y) g(u),

where h is a globally Lipschitz-continuous, positive, bounded, and L−periodic with
respect to x function defined in Ω, and g is a function satisfying either (3.1.11) or
(3.1.12).

Definition 3.1.4 (Pulsating fronts and speed of propagation) Let e = (e1, · · · , ed)
be an arbitrarily given unit vector in Rd. A function u = u(t, x, y) is called a pulsating
travelling front propagating in the direction of −e with an effective speed c 6= 0, if u is
a classical solution of:

ut = ∇ · (A(x, y)∇u) + q(x, y) · ∇u+ f(x, y, u), t ∈ R, (x, y) ∈ Ω,

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,

∀ k ∈
d∏
i=1

LiZ, ∀ (t, x, y) ∈ R × Ω, u(t+
k · e
c
, x, y) = u(t, x+ k, y),

lim
x·e→−∞

u(t, x, y) = 0, and lim
x·e→+∞

u(t, x, y) = 1,

0 ≤ u ≤ 1,

(3.1.14)

where the above limits hold locally in t and uniformly in y and in the directions of Rd

which are orthogonal to e .

Several works were concerned with pulsating travelling fronts in periodic media (see
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[1], [2], [11], [13], [15], [16], and [19]).
In the general periodic framework, we recall two essential known results and then

we move to our main results.

Theorem 3.1.5 (Berestycki, Hamel [1]) Let Ω be a domain satisfying (3.1.2), let e
be any unit vector of Rd and let f be a nonlinearity satisfying (3.1.5-3.1.6) and (3.1.7).
Assume, furthermore, that A and q satisfy (3.1.3) and (3.1.4) respectively. Then, there
exists a classical solution (c, u) of (4.1.8). Moreover, the speed c is positive and unique
while the function u = u(t, x, y) is increasing in t and it is unique up to a translation.
Precisely, if (c1, u1) and (c2, u2) are two classical solutions of (4.1.8), then c1 = c2 and
there exists h ∈ R such that u1(t, x, y) = u2(t+ h, x, y) for all (t, x, y) ∈ R× Ω.

In a periodic framework, Theorem 3.1.5 yields the existence of a pulsating travelling
front in the case of a “combustion” nonlinearity with an ignition temperature θ. It im-
plies, also, the uniqueness of the speed and of the profile of u. For “ZFK” nonlinearities,
we have

Theorem 3.1.6 (Berestycki, Hamel [1]) Let Ω be a domain satisfying (3.1.2), let
e be any unit vector in Rd and let f be a nonlinearity satisfying (3.1.5-3.1.6) and
(3.1.8). Assume, furthermore, that A and q satisfy (3.1.3) and (3.1.4) respectively.
Then, there exists c∗Ω,A,q,f (e) > 0 such that the problem (4.1.8) has no solution (c, u)

such that ut > 0 in R × Ω if c < c∗Ω,A,q,f (e) while, for each c ≥ c∗Ω,A,q,f (e), it has a
solution (c, u) such that u is increasing in t.

In fact, the existence and the monotonicity of a solution u∗ = u∗(t, x, y) of (4.1.8)
for c = c∗Ω,A,q,f (e) > 0 holds by approaching the “ZFK” nonlinearity f by a sequence
of combustion nonlinearities (fθ)θ such that fθ → f uniformly in R × Ω as θ ↘ 0+

(see more details in step 2 of the proof of formula (3.1.17) below, section 3.4). It
follows, from Theorem 3.1.5, that for each θ > 0, there exists a solution (cθ, uθ) of
(4.1.8) with the nonlinearity fθ such that uθ is increasing with respect to t. From
parabolic estimates, the functions uθ, converge up to a subsequence, to a function u∗

in C2
loc(R × Ω) as θ → 0+. Moreover, Lemmas 6.1 and 6.2 in [1] yield the existence of

a constant c∗(e) = c∗Ω,A,q,f (e) > 0 such that cθ ↗ c∗(e) as θ ↘ 0. Hence, the couple
(c∗(e), u∗) becomes a classical solution of (4.1.8) with the nonlinearity f and one gets
that u∗ is nondecreasing with respect to t as a limit of the increasing functions uθ.
Finally, one applies the strong parabolic maximum principle and Hopf lemma to get
that w is positive in R× Ω. In other words, u∗ is increasing in t ∈ R. Actually, in the
“ZFK” case, under the additional non-degeneracy assumption (3.1.9), it is known that
any pulsating front with speed c is increasing in time and c ≥ c∗(e) (see [1]).
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3.1. Introduction and main results

The value c∗Ω,A,q,f (e) which appears in Theorem 3.1.6 is called the minimal speed of
propagation of the pulsating travelling fronts propagating in the direction−e (satisfying
the reaction-advection-diffusion problem (4.1.8)).

We mention that the uniqueness of the pulsating travelling fronts, up to shifts in
time, for each c ≥ c∗Ω,A,q,f (e), has been proved recently by Hamel and Roques [8] for
“KPP” nonlinearities. On the other hand, a variational formula for the minimal speed
of propagation c∗Ω,A,q,f (e), in the case of a KPP nonlinearity, was proved in Berestycki,
Hamel, Nadirashvili [2]. This formula involves eigenvalue problems and gives the value
of the minimal speed in terms of the domain Ω and in terms of the coefficients A, q,
and f appearing in problem (4.1.8). The asymptotic behaviors and the variations
of the minimal speed of propagation, as a function of the diffusion, advection and
reaction factors and as a function of the periodicity parameters, were widely studied
in Berestycki, Hamel, Nadirashvili [3], El Smaily [5], El Smaily, Hamel, Roques [6],
Heinze [9], Ryzhik, Zlatoš [14], and Zlatoš [21].

3.1.2 Main results

In the periodic framework, having (in Theorems 3.1.5 and 3.1.6) the existence results
and some qualitative properties of the pulsating travelling fronts propagating in the
direction of a fixed unit vector −e ∈ Rd, we search a variational formula for the unique
speed of propagation c = c(e) whenever f is of the “combustion” type, and for the
minimal speed c∗ = c∗Ω,A,q,f (e) whenever f is of the “ZFK” or the “KPP” type. We will
answer the above investigations in the following theorem, but before this, we introduce
the following

Notation 3.1.7 For each function φ = φ(s, x, y) in C1,δ(R×Ω) (for some δ ∈ [0, 1)),
let

F [φ] := ∇x,y · (A∇x,yφ) + (ẽAẽ)φss +∇x,y · (Aẽφs) + ∂s(ẽA∇x,yφ) in D′(R× Ω),

where ẽ = (e, 0, · · · , 0) ∈ RN and e denotes a unit vector of Rd.

The first main result deals with the “combustion” case.

Theorem 3.1.8 Let e a unit vector of Rd. Assume that Ω is a domain satisfying (3.1.2)
and f is a nonlinear source satisfying (3.1.5) and (3.1.6). Assume furthermore that A
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and q satisfy (3.1.3) and (3.1.4) respectively. Consider the set of functions

E =
{
ϕ = ϕ(s, x, y), ϕ is of class C1,µ(R× Ω) for each µ ∈ [0, 1), F [ϕ] ∈ C(R× Ω),

ϕ is L−periodic with respect to x, ϕs > 0 in R× Ω, ϕ(−∞, ., .) = 0,

ϕ(+∞, ., .) = 1 uniformly in Ω, and ν · A(∇x,yϕ+ ẽϕs) = 0 on R× ∂Ω} .

For each ϕ ∈ E, we define the function Rϕ ∈ C(R× Ω) as, for all (s, x, y) ∈ R× Ω,

R ϕ(s, x, y) =
F [ϕ](s, x, y) + q · ∇x,yϕ(s, x, y) + f(x, y, ϕ)

∂sϕ(s, x, y)
+ q(x, y) · ẽ.

If f is a nonlinearity of “combustion” type satisfying (3.1.7), then the unique speed c(e)
that corresponds to problem (4.1.8) is given by

c(e) = min
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y), (3.1.15)

c(e) = max
ϕ∈E

inf
(s,x,y)∈R×Ω

Rϕ(s, x, y). (3.1.16)

Furthermore, the min in (3.1.15) and the max in (3.1.16) are attained by, and only
by, the function φ(s, x, y) = u

(
s−x·e
c(e)

, x, y
)
and its shifts φ(s + τ, x, y) for any τ ∈ R,

where u is the solution of (4.1.8) with a speed c(e) (whose existence and uniqueness up
to a translation in t follow from Theorem 3.1.5).

The second result is concerned with “ZFK” nonlinearities.

Theorem 3.1.9 Under the same notations of Theorem 3.1.8, if f is a nonlinearity of
“ZFK” type satisfying (3.1.5-3.1.6) and (3.1.8), then the minimal speed c∗Ω,A,q,f (e) is
given by

c∗Ω,A,q,f (e) = min
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y). (3.1.17)

Furthermore, the min is attained by the function φ∗(s, x, y) = u∗
(
s−x·e
c∗(e)

, x, y
)
and its

shifts φ∗(s+ τ, x, y) for any τ ∈ R, where u∗ is any solution of (4.1.8) propagating with
the speed c∗(e) = c∗Ω,A,q,f (e).

In particular, Theorem 3.1.9 yields that formula (3.1.17) holds in the “KPP” case
(3.1.10) as well.
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Remark 3.1.10 In Theorem 3.1.8, the min and the max are attained by, and only
by, the pulsating front φ(s, x, y) and its shifts φ(s + τ, x, y) for all τ ∈ R. In Theorem
3.1.9, the min is achieved by the front φ∗(s, x, y) with the speed c∗(e) and all its shifts
φ∗(s+ τ, x, y). Actually, if the pulsating front φ∗ is unique up to shift, then φ∗ and its
shifts are the unique minimizers in formula (3.1.17). The uniqueness is known in the
“KPP” case (see Hamel, Roques [8]), but it is still open in the general “ZFK” case.

We mention that a max-min formula of the type (3.1.16) can not hold for the
minimal speed c∗(e) in the “ZFK” or the “KPP” case. A simple justification is given in
section 3.2.

The variational formulations of the speeds of propagation which are given in Theo-
rems 3.1.8 and 3.1.9 are more general than those in Hamel [7] and Heinze, Papanicolaou,
Stevens [10]. In Theorems 3.1.8 and 3.1.9, we consider nonhomogeneous nonlinearities
f = f(x, y, u) and the domain Ω is in the most general periodic situation. However, in
[7], the domain was an infinite cylinder of RN and the advection q was in the form of
shear flows. Moreover, in this paper, the nonhomogeneous operator ∇· (A∇u) replaces
the Laplace operator ∆u taken in [7]. On the other hand, in [10], the domain Ω was
an infinite cylinder in RN with a bounded cross section. Namely, Ω = R × ω ⊂ RN

where the cross section ω is a bounded domain in RN−1. Moreover, the authors did not
consider an advection field in [10]. Finally, concerning the nonlinearities, they were
depending only on u (i.e f = f(u) and is satisfying either (3.1.11) or (3.1.12)) in both
of [7] and [10].

Besides the fact that we consider here a wider family of diffusion and reaction coef-
ficients, our assumptions are less strict than those supposed in [10] and [17]. Roughly
speaking, the authors, in [10] and [17], assume a stability condition on the pulsating
travelling fronts. We mention that such a stability condition is fulfilled in the homoge-
nous setting; however, it has not been rigorously proved so far that this condition is
satisfied in the heterogenous setting. Meanwhile, the assumptions of the present paper
only involve the coefficients of the reaction-advection-diffusion equation (4.1.8), and
they can then be checked easily.

Actually, in the “KPP” case, another “simpler” variational formula for the minimal
speed c∗(e) = c∗Ω,A,q,f (e) is known. This known formula involves only the linearized
nonlinearity f at u = 0. Namely, it follows from [2] that

Theorem 3.1.11 (Berestycki, Hamel, Nadirashvili [2]) Let e be a fixed unit vec-
tor in Rd and let ẽ = (e, 0, . . . , 0) ∈ RN . Assume that f is a “KPP” nonlinearity and
that Ω, A and q satisfy (3.1.2), (3.1.3) and (3.1.4) respectively. Then, the minimal
speed c∗(e) of pulsating fronts solving (4.1.8) and propagating in the direction of e is
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given by

c∗(e) = c∗Ω,A,q,f (e) = min
λ>0

k(λ)

λ
, (3.1.18)

where k(λ) = kΩ,e,A,q,ζ(λ) is the principal eigenvalue of the operator LΩ,e,A,q,ζ,λ which is
defined by

LΩ,e,A,q,ζ,λψ := ∇ · (A∇ψ) + 2λẽ · A∇ψ + q · ∇ψ
+[λ2ẽAẽ+ λ∇ · (Aẽ) + λq · ẽ+ ζ]ψ

(3.1.19)

acting on the set

Ẽλ =
{
ψ ∈ C2(Ω), ψ is L-periodic with respect to x and ν · A∇ψ = −λ(ν · Aẽ)ψ on ∂Ω

}
.

3.2 Main tools: change of variables and maximum
principles

In this section, we introduce some tools that will be used in different places of this
paper in order to prove the main results.

Throughout this paper, ẽ will denote the vector in RN defined by

ẽ = (e, 0, · · · , 0) = (e1, · · · , ed, 0, · · · , 0),

where e1, · · · , ed are the components of the vector e.

Our study is concerned with the model (4.1.8). Having a “combustion”, a “ZFK”,
or a “KPP” nonlinearity, together with the assumptions (3.1.3) and (3.1.4), problem
(4.1.8) has at least a classical solution (c, u) such that c > 0 and ut > 0 (see Theorems
3.1.5 and 3.1.6). The function u is globally C1,µ(R×Ω) and C2,µ with respect to (x, y)

variables (for every µ ∈ [0, 1)). It follows that ∇x,y.(A∇u) ∈ C(R × Ω). Having a
unit direction e ∈ Rd, and having a bounded classical solution (c, u) of (4.1.8) with
c = c(e) (combustion case) or c ≥ c∗(e) (ZFK or KPP case), we make the same change
of variables as Xin [20]. Namely, let φ = φ(s, x, y) be the function defined by

φ(s, x, y) = u

(
s− x · e

c
, x, y

)
for all s ∈ R and (x, y) ∈ Ω. (3.2.1)
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One then has

∀ (s, x, y) ∈ R× Ω, [∇x,y · (A∇x,yφ) + (ẽAẽ)φss +∇x,y · (Aẽφs) + ∂s(ẽA∇x,yφ) ] (s, x, y)

= ∇x,y · (A∇u)(t, x, y),

where s = x · e+ ct. Consequently,

F [φ](s, x, y) = ∇x,y · (A∇x,yφ) + (ẽAẽ)φss +∇x,y · (Aẽφs) + ∂s(ẽA∇x,yφ)

is defined at each point (s, x, y) ∈ R× Ω and the map (s, x, y) 7→ F [φ](s, x, y) belongs
to C(R× Ω).

In all this paper, L = Lc will denote the operator acting on the set E (given in
Theorem 3.1.8) and which is defined by

∀ ϕ ∈ E, Lϕ = ∇x,y · (A∇x,yϕ) + (ẽAẽ)ϕss +∇x,y · (Aẽϕs) + ∂s(ẽA∇x,yϕ)

+ q · ∇x,yϕ + (q · ẽ − c)ϕs in C(R× Ω)

= F [ϕ] + q · ∇x,yϕ+ (q · ẽ − c)ϕs in C(R× Ω).

(3.2.2)

It follows from above that if φ = φ(s, x, y) is a function that is given by a pulsating
travelling (c, u) solving (4.1.8) (under the change of variables (3.2.1)), then F [φ] ∈
C(R × Ω), φ is globally bounded in C1,µ(R × Ω) (for every µ ∈ [0, 1)) and it satisfies
the following degenerate elliptic equation

Lφ(s, x, y) + f(x, y, φ) = F [φ](s, x, y) + q · ∇x,yφ(s, x, y)

+ (q · ẽ − c)φs(s, x, y) + f(x, y, φ) = 0 in R× Ω,
(3.2.3)

together with the boundary and periodicity conditions{
φ is L−periodic with respect to x,
ν · A(∇x,yφ+ ẽφs) = 0 on R× Ω.

(3.2.4)

Moreover, since u(t, x, y)→ 0 as x · e→ −∞ and u(t, x, y)→ 1 as x · e→ +∞ locally
in t and uniformly in y and in the directions of Rd which are orthogonal to e, and since
φ is L−periodic with respect to x, the change of variables s = x · e+ ct guarantees that

φ(−∞, ., .) = 0 and φ(+∞, ., .) = 1 uniformly in (x, y) ∈ Ω. (3.2.5)

Therefore, one can conclude that φ ∈ E.

Remark 3.2.1 It is now clear that a max-min formula of the type (3.1.16) can not
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hold for the minimal speed c∗(e) > 0 in the “ZFK” or the “KPP” case. Indeed, for each
speed c ≥ c∗(e), there is a solution (c, u) of (4.1.8) such that ut > 0, which gives birth
to a function φ = φ(s, x, y) under the change of variables (3.2.1). Owing to the above
discussions the function φ ∈ E and it satisfies

c = Rφ(s, x, y) for all (s, x, y) ∈ R× Ω.

Therefore
sup
ϕ∈E

inf
(s,x,y)∈R×Ω

Rϕ(s, x, y) ≥ c.

Since one can choose any c ≥ c∗(e), one concludes that

sup
ϕ∈E

inf
(s,x,y)∈R×Ω

Rϕ(s, x, y) = +∞

in the “ZFK” or the “KPP” case.

Remark 3.2.2 (The same formulæ of Theorems 3.1.8 and 3.1.9, but over a
subset of E)
If the restriction of the nonlinear source f in (4.1.8) is C1,δ(Ω × [0, 1]), one can then
conclude that (see the proof of Proposition 6.3 in [1]) any solution u of (4.1.8) satisfies:

∀(t, x, y) ∈ R× Ω, |∂ttu(t, x, y)| ≤M ∂tu(t, x, y) (3.2.6)

for some constant M independent of (t, x, y). In other words, the function

φ(s, x, y) = u((s− x · e)/c, x, y)

(where c = c(e) in the “combustion” case, and c = c∗(e) in the “ZFK” or the “KPP”
case) satisfies

∀(s, x, y) ∈ R× Ω, |∂ssφ(s, x, y)| ≤ (M/c) ∂sφ(s, x, y).

Let E ′ be the functional subset of E defined by

E
′
=
{
ϕ ∈ E, ∃C > 0, |∂ssϕ(s, x, y)| ≤ C ∂sϕ(s, x, y) for all (s, x, y) ∈ R× Ω

}
.

The previous facts together with the discussions at the beginning of this section imply
that the functions φ and φ∗ of Theorems 3.1.8 and 3.1.9 are elements of E ′ ⊂ E. These
theorems also yield that the max-min and the min-max formulæ can also hold over the
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subset E ′ of E.
Namely, in the case of a “combustion” nonlinearity

c(e) = min
ϕ∈E ′

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y) (3.2.7)

and
c(e) = max

ϕ∈E ′
inf

(s,x,y)∈R×Ω
Rϕ(s, x, y). (3.2.8)

Moreover, the min and the max are attained at, and only at, the function φ(s, x, y) and
its shifts φ(s+ τ, x, y) for any τ ∈ R.

On the other hand, only a min-max formula holds in the case of “ZFK” or “KPP”
nonlinearities. That is

c∗(e) = min
ϕ∈E ′

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y). (3.2.9)

Moreover, the min is attained at the function φ∗(s, x, y) and its shifts φ∗(s+ τ, x, y) for
any τ ∈ R.

In the proofs of the variational formulæ which were given in Theorem 3.1.8 and The-
orem 3.1.9, we will use two versions of the maximum principle in unbounded domains
for some problems related to (3.2.2-3.2.4) and (3.2.5). Such generalized maximum
principles were proved in Berestycki, Hamel [1] in a slightly more general framework:

Lemma 3.2.3 ([1]) Let e be a fixed unit vector in Rd. Let g(x, y, u) be a globally
bounded and globally Lipschitz-continuous function defined in Ω × R and assume that
g is non-increasing with respect to u in Ω × (−∞, δ] for some δ > 0. Let h ∈ R and
Σ−h := (−∞, h)× Ω. Let c 6= 0 and φ1(s, x, y), φ2(s, x, y) be two bounded and globally
C1,µ

(
Σ−h

)
functions (for some µ > 0) such that



Lφ1 + g(x, y, φ1) ≥ 0 in D′(Σ−h ),

L φ2 + g(x, y, φ2) ≤ 0 in D′(Σ−h ),

ν · A [ẽ(φ1
s − φ2

s) +∇x,y(φ
1 − φ2)] ≤ 0 on (−∞, h]× ∂Ω,

lim
s0→−∞

sup
{s≤s0, (x,y)∈Ω}

[φ1(s, x, y)− φ2(s, x, y)] ≤ 0,

(3.2.10)

where

Lφ := ∇x,y · (A∇x,yφ) + (ẽAẽ)φss +∇x,y · (Aẽφs) + ∂s(ẽA∇x,yφ)

+ q · ∇x,yφ + (q · ẽ − c)φs,
(3.2.11)
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and ẽ denotes the vector (e, 0, · · · , 0) ∈ RN .
If φ1 ≤ δ in Σ−h and φ1(h, x, y) ≤ φ2(h, x, y) for all (x, y) ∈ Ω, then

φ1 ≤ φ2 in Σ−h .

Remark 3.2.4 Note here that φ1, φ2, q, A and g are not assumed to be L−periodic in
x and that q is not assumed to satisfy (3.1.4).

Proof. Since φ1 and φ2 are globally bounded, one has φ1 − ε ≤ φ2 in Σ−h for ε > 0

large enough. Let us set

ε∗ = inf
{
ε > 0, φ1 − ε ≤ φ2 in Σ−h

}
≥ 0.

By continuity, one has φ1 − ε∗ ≤ φ2 in Σ−h . Thus, to complete the proof of Lemma
3.2.3, it suffices to to prove that ε∗ = 0.

Assume ε∗ > 0. There exist a sequence {εn} converging to ε∗, with 0 < εn < ε for
all n, and a sequence of points (sn, xn, yn) ∈ Σ−h such that

φ1(sn, xn, yn)− εn ≥ φ2(sn, xn, yn).

Owing to the assumption that lim
s0→−∞

sup
{s≤s0, (x,y)∈Ω}

[φ1(s, x, y)− φ2(s, x, y)] ≤ 0, the

sequence (sn) is bounded from below (if not, there exists a subsequence denoted by
(sn) such that sn → −∞ as n→ +∞. One consequently has

0 ≥ lim
sn→−∞

sup
{s≤sn, (x,y)∈Ω}

[φ1(sn, x, y)− φ2(sn, x, y)]

≥ lim
n→+∞

[φ1(sn, xn, yn)− φ2(sn, xn, yn)]

≥ lim
n→+∞

εn

= ε∗.

It follows that ε∗ = 0 and this contradicts with the assumption that ε∗ > 0). Moreover,
the sequence (sn) is also bounded from above (sn ≤ h) and hence, one can assume,
up to extraction of some subsequence, that sn → s̄ ∈ (−∞, h] as n → +∞. On the

other hand, let x̃n be in
d∏
i=1

LiZ such that (xn− x̃n, yn) ∈ C. Up to extraction of some

subsequence, one can also assume that (xn − x̃n, yn)→ (x̄, ȳ) ∈ C as n→ +∞.
Set

φin(s, x, y) = φi(s, x+ x̃n, y) for all (s, x, y) ∈ Σ−h , i = 1, 2.
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The above functions are defined in the same set Σ−h = (−∞, h]× Ω because of the
choice of the x̃n and the L−periodicity of Ω with respect to x. From the regularity
assumptions for φ1 and φ2 and up to extraction of some subsequence, the functions
φin converge, in C1

loc, to two functions φi∞ ∈ C1,µ(Σ−h ). Similarly, since q and A are
globally CΩ (q and A are C1,δ(Ω) and C2,δ(Ω) respectively), one can assume that the
fields qn(x, y) = q(x + x̃n, y) and An(x, y) = A(x + x̃n, y) converge locally in Ω to two
globally bounded and Lipschitz fields q∞ and A∞ as n→ +∞. The matrix satisfies the
same ellipticity condition (given in (3.1.3)) as A.

The functions φin satisfy

Ln φ
1
n − Ln φ2

n ≥ −g(x+ x̃n, y, φ
1
n(s, x, y)) + g(x+ x̃n, y, φ

2
n(s, x, y)) in D′(Σ−h ),

where

Ln φ := ∇x,y · (An∇x,yφ) + (ẽAnẽ)φss +∇x,y · (Anẽφs) + ∂s(ẽAn∇x,yφ)

+ qn · ∇x,yφ + (qn · ẽ − c)φs.

Since φ1 ≤ δ in Σ−h and g(x, y, u) is non-increasing with respect to u in Ω×(−∞, δ],
one gets

Ln φ
1
n − Ln φ2

n ≥ −g(x+ x̃n, y, φ
1
n(s, x, y)− ε∗) + g(x+ x̃n, y, φ

2
n(s, x, y)) in D′(Σ−h ).

(3.2.12)

From the assumptions of Lemma 3.2.3, one can also assume, up to extraction of
some subsequence, that the functions

Rn(s, x, y) := −g(x+ x̃n, y, φ
1
n(s, x, y)− ε∗) + g(x+ x̃n, y, φ

2
n(s, x, y))

converge to a function R∞(s, x, y) locally in Σ−h . Since |Rn| ≤ ||g||Lip|φ1
n − ε∗ − φ2

n| for
all n, one gets |R∞| ≤ ||g||Lip|φ1

∞ − ε∗ − φ2
∞| at the limit. In other words, there exists

a globally bounded function B(s, x, y) defined in Σ−h such that

R∞(s, x, y) = B(s, x, y)
[
φ1
∞(s, x, y)− ε∗ − φ2

∞(s, x, y)
]

for all (s, x, y) ∈ Σ−h .

By passing to the limit in (3.2.12), it follows that the functions φ1
∞ and φ2

∞ satisfy

L∞φ
1
∞ − L∞φ2

∞ ≥ B(s, x, y)(φ1
∞ − ε∗ − φ2

∞) in D′(Σ−h )

where
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L∞ φ := ∇x,y · (A∞∇x,yφ) + (ẽA∞ẽ)φss +∇x,y · (A∞ẽφs) + ∂s(ẽA∞∇x,yφ)

+ q∞ · ∇x,yφ + (q∞ · ẽ − c)φs.

Moreover, the inequalities φ1
∞ ≤ δ in Σ−h and φ1

∞(h, ., .) ≤ φ2
∞(h, ., .) in Ω hold as

well. Furthermore, φ1
∞ − ε∗ ≤ φ2

∞ and

∀n, φ1(sn, xn, yn)− εn > φ2(sn, xn, yn),

hence
∀n, φ1

n(sn, xn − x̃n, yn)− εn > φ2
n(sn, xn − x̃n, yn).

Passing to the limit as n→ +∞, one gets φ1
∞(s̄, x̄, ȳ)− ε∗ ≥ φ2

∞(s̄, x̄, ȳ). Therefore,

φ1
∞(s̄, x̄, ȳ)− ε∗ = φ2

∞(s̄, x̄, ȳ),

whence s̄ < h.

Coming back to the variables (t, x, y), let us define

Eh = {(t, x, y) ∈ R× Ω, ct+ x · e < h}

and set
ui(t, x, y) = φi∞(ct+ x · e, x, y) for all (t, x, y) ∈ Eh, i = 1, 2.

The function z := u1 − ε∗ − u2, which is defined and globally C1 in Eh, satisfies

∇x,y · (A∞∇x,yz)− q∞(x, y) · ∇x,yz − ∂tz ≥ b(t, x, y)z in D′(Eh)

where the function b(t, x, y) := B(ct+ x · e, x, y) is globally bounded in Eh. Moreover,

ν · A∞∇x,yz ≤ 0 on {ct+ x · e ≤ h, (x, y) ∈ ∂Ω}.

On the other hand, the function z is non-positive and it vanishes at the point

(t̄, x̄, ȳ) =

(
s̄− x̄ · e

c
, x̄, ȳ

)
, which is such that c t̄+ x̄ ·e(= s̄) < h. Therefore, it follows

from the maximum principle that z ≡ 0 in Eh ∩ {t ≤ t̄}. In other words, u1 − ε∗ = u2

in Eh ∩ {t ≤ t̄}. In particular, one has

φ1
∞ − ε∗ = φ2

∞ in Σ−h ∩ {
s− x · e

c
≤ t̄ }.
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3.3. Case of a “combustion” nonlinearity

Since the set {x · e} is not bounded from above or below, there exists a point
(h, x0, y0) ∈ Σ−h ∩{ s−x·ec

≤ t̄ }. At that point, one has φ1
∞(h, x0, y0)−ε∗ = φ2

∞(h, x0, y0).

But the later is impossible because φ1
∞ ≤ φ2

∞ for s = h.

Hence, the assumption ε∗ > 0 is ruled out and the proof of Lemma 3.2.3 is complete.
�

Changing φ1(s, x, y), φ2(s, x, y) and g(x, y, s) into 1− φ1(−s, x, y), 1− φ2(−s, x, y)

and −g(x, y, 1− s) respectively in Lemma 3.2.3 leads to the following

Lemma 3.2.5 ([1]) Let e be a fixed unit vector in Rd. Let g(x, y, u) be a globally
bounded and globally Lipschitz-continuous function defined in Ω × R and assume that
g is non-increasing with respect to u in Ω× [1− δ,+∞) for some δ > 0. Let h ∈ R and
Σ+
h := (h,+∞)× Ω. Let c 6= 0 and φ1(s, x, y), φ2(s, x, y) be two bounded and globally

C1,µ
(

Σ+
h

)
functions (for some µ > 0) such that



Lφ1 + g(x, y, φ1) ≥ 0 in D′(Σ+
h ),

L φ2 + g(x, y, φ2) ≤ 0 in D′(Σ+
h ),

ν · A [ẽ(φ1
s − φ2

s) +∇x,y(φ
1 − φ2)] ≤ 0 on [h,+∞)× ∂Ω,

lim
s0→+∞

sup
{s≥s0, (x,y)∈Ω}

[φ1(s, x, y)− φ2(s, x, y)] ≤ 0,

(3.2.13)

where L is the same operator as in Lemma 3.2.3.
If φ2 ≥ 1− δ in Σ+

h and φ1(h, x, y) ≤ φ2(h, x, y) for all (x, y) ∈ Ω, then

φ1 ≤ φ2 in Σ+
h .

3.3 Case of a “combustion” nonlinearity

This section is devoted to prove Theorem 3.1.8, where the nonlinearity f satisfies
the assumptions (3.1.5-3.1.6) and (3.1.7).

3.3.1 Proof of formula (3.1.15)

Having a prefixed unit direction e ∈ Rd, and since the coefficients A and q of
problem (4.1.8) satisfy the assumptions (3.1.3) and (3.1.4), it follows, from Theorem
3.1.5, that there exists a unique pulsating travelling front (c(e), u) (u is unique up to
a translation in the time variable) which solves problem (4.1.8). Moreover, ∂tu > 0 in
R× Ω. We will complete the proof of (3.1.15) via two steps.
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Step 1. After the discussions done in the section 3.2, the existence of a classical so-
lution (c(e), u), satisfying (4.1.8), implies the existence of a globally C1(R×Ω) function
φ(s, x, y) satisfying 0 ≤ φ ≤ 1 in R× Ω, with

φ is L−periodic with respect to x,
Lφ(s, x, y) + f(x, y, φ) = 0 in D′(R× Ω),

ν · A(∇x,yφ+ ẽφs) = 0 in R× ∂Ω,

φ(−∞, ., .) = 0, and φ(+∞, ., .) = 1 uniformly in (x, y) ∈ Ω,

(3.3.1)

where L is the operator defined in (3.2.2) for c = c(e). We also recall that the two
functions u and φ satisfy the relation

u(t, x, y) = φ(x · e+ c(e)t, x, y), (t, x, y) ∈ R× Ω.

One has ∂sφ > 0 in R×Ω and this is equivalent to say that the function u = u(t, x, y)

is increasing in t, since c(e) > 0.

Together with the facts in section 3.2.1, one gets that the function φ ∈ E. Further-
more, (3.3.1) yields that

∀ s ∈ R, ∀(x, y) ∈ Ω, c(e) = Rφ(s, x, y), (3.3.2)

and
Lφ(s, x, y) + f(x, y, φ) = 0, (3.3.3)

where Rφ is the function defined in Theorem 3.1.8. In other words, the L−periodic
(with respect to x) function Rφ is constant over R× Ω and it is equal to c(e).

It follows, from (3.3.2) and from the above explanations, that

c(e) ≥ inf
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y).

To complete the proof of formula (3.1.15), we assume that

c(e) > inf
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y).

Then, there exists a function ψ = ψ(s, x, y) ∈ E such that

c(e) > sup
(s,x,y)∈R×Ω

Rψ (s, x, y).
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3.3. Case of a “combustion” nonlinearity

Since the function ψ ∈ E, one then has ψs(s, x, y) > 0 for all (s, x, y) ∈ R × Ω. This
yields that

Lψ(s, x, y) + f(x, y, ψ) < 0 in R× Ω, (3.3.4)

where L is the operator defined in (3.2.2) for c = c(e).

Notice that the later holds for each function of the type

ψτ (s, x, y) := ψ(s+ τ, x, y)

because of the invariance of (3.3.4) with respect to s and because the advection field q
and the diffusion matrix A depend on the variables (x, y) only. That is

Lψτ (s, x, y) + f(x, y, ψτ ) < 0 in R× Ω. (3.3.5)

Step 2. In order to draw a contradiction, we are going to slide the function ψ with
respect to φ. From the limiting conditions satisfied by these two functions, there exists
a real number B > 0 such that{

φ(s, x, y) ≤ θ for all s ≤ −B, (x, y) ∈ Ω,

ψ(s, x, y) ≥ 1− ρ for all s ≥ B, (x, y) ∈ Ω,

and
φ(B, x, y) ≥ 1− ρ for all (x, y) ∈ Ω, (3.3.6)

where θ and ρ are the values that appear in the conditions (3.1.7) satisfied by the
“combustion” nonlinearity f. Taking τ ≥ 2B, and since ψ is increasing with respect to
s, one gets that φ(−B, x, y) ≤ ψτ (−B, x, y) for all (x, y) ∈ Ω and ψτ ≥ 1− ρ in Σ+

−B.

It follows from Lemma 3.2.3 (take δ = θ, h = −B, φ1 = φ, and φ2 = ψτ ) that
φ ≤ ψτ in Σ−−B. Moreover, Lemma 3.2.5 (take δ = ρ, h = −B, φ1 = φ, and φ2 = ψτ )
implies that φ ≤ ψτ in Σ+

−B. Consequently, φ ≤ ψτ in R× Ω for all τ ≥ 2B.

Let us now decrease τ and set

τ ∗ = inf{τ ∈ R, φ ≤ ψτ in R× Ω }.

First one notes that τ ∗ ≤ 2B. On the other hand, the limiting conditions ψ(−∞, ., .) =

0 and φ(+∞, ., .) = 1 imply that τ ∗ is finite. By continuity, φ ≤ ψτ
∗ in R × Ω. Two

cases may occur according to the value of sup
[−B,B]×Ω

(
φ− ψτ∗

)
.

case 1: suppose that
sup

[−B,B]×Ω

(
φ− ψτ∗

)
< 0.
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Since the functions ψ and φ are globally C1(R × Ω) there exists η > 0 such that the
above inequality holds for all τ ∈ [τ ∗−η, τ ∗]. Choosing any τ in the interval [τ ∗−η, τ ∗],
and applying Lemma 3.2.3 to the functions ψτ and φ, one gets that

φ(s, x, y) ≤ ψτ (s, x, y) for all s ≤ −B, (x, y) ∈ Ω,

together with the inequality

φ(s, x, y) < ψτ (s, x, y) for all s ∈ [−B,B], and for all (x, y) ∈ Ω.

Owing to (3.3.6) and to the above inequality, it follows that

ψτ (B, x, y) ≥ 1− ρ in Ω.

Moreover, since the function ψ is increasing in s, one gets that ψτ ≥ 1 − ρ in Σ+
B.

Lemma 3.2.5, applied to φ and ψτ in Σ+
B, yields that

φ(s, x, y) ≤ ψτ (s, x, y) for all s ≥ B, (x, y) ∈ Ω.

As a consequence, one obtains φ ≤ ψτ in R × Ω, and that contradicts the minimality
of τ ∗. Therefore, case 1 is ruled out.

case 2: suppose that
sup

[−B,B]×Ω

(
φ− ψτ∗

)
= 0.

Then, there exists a sequence of points (sn, xn, yn) in [−B,B]× Ω such that

φ(sn, xn, yn)− ψτ (sn, xn, yn)→ 0 as n→ +∞.

Due to the L− periodicity of the functions φ and ψ, one can assume that (xn, yn) ∈ C.
Consequently, one can assume, up to extraction of a subsequence, that (sn, xn, yn) →
(s̄, x̄, ȳ) ∈ [−B,B]× C as n→ +∞. By continuity, one gets φ(s̄, x̄, ȳ) = ψτ

∗
(s̄, x̄, ȳ).

We return now to the variables (t, x, y). Let

z(t, x, y) = φ(x · e+ c(e) t, x, y)− ψ(x · e+ c(e) t+ τ ∗, x, y) for all (t, x, y) ∈ R× Ω,

= u(t, x, y)− ψ(x · e+ c(e) t+ τ ∗, x, y).

Since the functions φ and ψ are in E, it follows that the function z is globally C1(R×Ω)
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3.3. Case of a “combustion” nonlinearity

and it satisfies

∀ (t, x, y) ∈ R× Ω, ∇x,y · (A∇z)(t, x, y) = F [φ](s, x, y)− F [ψτ
∗
](s, x, y),

where s = x · e + c(e)t. Thus, ∇x,y · (A∇z) ∈ C(R × Ω). Moreover, the function z is
non positive and it vanishes at the point ((s̄− x̄ ·e)/c(e), x̄, ȳ). It satisfies the boundary
condition ν · (A∇z) = 0 on R × ∂Ω. Furthermore, it follows, from (3.3.2) and (3.3.4),
that

∂tz −∇x,y · (A∇z) + q(x, y) · ∇x,yz ≤ f(x, y, φ)− f(x, y, ψτ
∗
).

However, the function f is globally Lipschitz-continuous in Ω× R; hence, there exists
a bounded function b(t, x, y) such that

∂tz −∇x,y · (A∇z) + q(x, y) · ∇x,yz + b(t, x, y) z ≤ 0 in R× Ω,

with z(t, x, y) ≤ 0 for all (t, x, y) ∈ R× Ω.

Applying the strong parabolic maximum principle and Hopf lemma, one gets that
z(t, x, y) = 0 for all t ≤ (s̄ − x̄ · e)/c(e) and for all (x, y) ∈ Ω. On the other hand, it
follows from the definition of z and from the L−periodicity of the functions φ and ψ
that z(t, x, y) = 0 for all (t, x, y) ∈ R× Ω. Consequently,

φ(s, x, y) = ψτ
∗
(s, x, y) = ψ(s+ τ ∗, x, y) for all (s, x, y) ∈ R× Ω.

Referring to the equations (3.3.3) and (3.3.5), one gets a contradiction. Thus, case
2 is ruled out too, and that completes the proof of the formula (3.1.15).

Remark 3.3.1 (The uniqueness, up to a shift, of the minimizer in (3.1.15))
If ψ ∈ E is a minimizer in (3.1.15). The above arguments imply that case 2 necessarily
occurs, and that ψ is equal to a shift of φ. In other words, the minimum in (3.1.15) is
realized by and only by the shifts of φ.

3.3.2 Proof of formula (3.1.16)

In this subsection, we are going to prove the “max-min” formula of the speed of
propagation c(e) whenever the nonlinearity f is of the “combustion” type. The tools
and techniques which one uses here are similar to those used in the previous subsec-
tion. However, we are going to sketch the proof of formula (3.1.16) for the sake of
completeness.
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As it was justified in the previous subsection, one easily gets that

c(e) ≤ sup
ϕ∈E

inf
(s,x,y)∈R×Ω

Rϕ(s, x, y)

and
∀ (s, x, y) ∈ R× Ω, c(e) = Rφ(s, x, y),

where
φ(s, x, y) = u ((s− x · e)/c(e), x, y) , for all (s, x, y) ∈ R× Ω,

and u = u(t, x, y) is the unique (up to a translation in t) pulsating travelling front
solving problem (4.1.8) and propagating in the speed c(e). We recall that the function
φ ∈ E (see section 3.2). It follows that the function φ satisfies the following

φ is L−periodic with respect to x,
φ is increasing in s ∈ R,
Lφ(s, x, y) + f(x, y, φ) = 0 in R× Ω,

ν · A(∇x,yφ+ ẽφs) = 0 in R× ∂Ω,

φ(−∞, ., .) = 0, and φ(+∞, ., .) = 1 uniformly in (x, y) ∈ Ω,

(3.3.7)

where L is the operator defined in (3.2.2) for c = c(e).

Notice that the later holds also for each function of the type

φτ (s, x, y) := φ(s+ τ, x, y)

because of the invariance of (3.3.8) with respect to s and because the advection field q
and the diffusion matrix A depend on the variables (x, y) only.

To complete the proof of formula (3.1.16), we assume that

c(e) < sup
ϕ∈E

inf
(s,x,y)∈R×Ω

Rϕ(s, x, y).

Hence, there exists ψ ∈ E such that

c(e) < Rψ (s, x, y), for all (s, x, y) ∈ R× Ω.

Since the function ψ ∈ E, one then has ψs(s, x, y) > 0 for all (s, x, y) ∈ R × Ω. This
yields that

Lψ(s, x, y) + f(x, y, ψ) > 0 in R× Ω. (3.3.8)

To get a contradiction, we are going to slide the function φ with respect to ψ. In
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3.3. Case of a “combustion” nonlinearity

fact, the limiting conditions satisfied by ψ and φ, which are elements of E, yield that
there exists a real positive number B such that

{
ψ(s, x, y) ≤ θ for all s ≤ −B, (x, y) ∈ Ω,

φ(s, x, y) ≥ 1− ρ for all s ≥ B, (x, y) ∈ Ω,

and
ψ(B, x, y) ≥ 1− ρ for all (x, y) ∈ Ω, (3.3.9)

where θ and ρ are the values appearing in the conditions (3.1.7) satisfied by the non-
linearity f. Having τ ≥ 2B, one applies Lemma 3.2.3 (taking δ = θ, h = −B, φ1 =

ψ, and φ2 = φτ ) and Lemma 3.2.5 (taking δ = ρ, h = −B, φ1 = ψ, and φ2 = φτ )
to the functions φτ and ψ, over the domains Σ−−B and Σ+

−B respectively, to get that
ψ ≤ φτ in Σ−−B and ψ ≤ φτ in Σ+

−B. Consequently, one can conclude that

∀ τ ≥ 2B, ψ ≤ φτ in R× Ω.

Let us now decrease τ and set

τ ∗ = inf{τ ∈ R, ψ ≤ φτ in R× Ω }.

It follows, from the limiting conditions ψ(+∞, ., .) = 1 and φ(−∞, ., .) = 0, that τ ∗ is
finite. By continuity, we have ψ ≤ φτ

∗
. In this situation, two cases may occur. Namely,

case A: sup
[−B,B]×Ω

(
ψ − φτ∗

)
< 0,

or
case B: sup

[−B,B]×Ω

(
ψ − φτ∗

)
= 0.

Imitating the ideas and the skills used in case 1 and case 2 during the proof of formula
(3.1.15), one gets that case A (owing to minimality of τ ∗) and case B (owing to (3.3.7)
and (3.3.8)) are ruled out.

Therefore, the assumption that

c(e) < sup
ϕ∈E

inf
(s,x,y)∈R×Ω

Rϕ(s, x, y)

is false, and that completes the proof of formula (3.1.16).

Remark 3.3.2 (The uniqueness, up to a shift, of the maximizer in (3.1.16))
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Similar to what we have already mentioned in Remark 3.3.1, if ψ ∈ E is a maximizer
in (3.1.16), then the above arguments yield that case B necessarily occurs, and that ψ
is equal to a shift of φ. One then concludes that the maximum in (3.1.16) is realized
by, and only by, the shifts of φ.

3.4 Case of “ZFK” or “KPP” nonlinearities: proof of
formula (3.1.17)

This section is devoted to the proof of Theorem 3.1.9. We assume that the nonlin-
ear source f is of “ZFK” type. Remember that this case includes the class of “KPP”
nonlinearities. In the first subsection, we give a unified proof including an argument
of the “sliding method”. In the second subsection, we give a “simpler” proof of the
min−max formula (3.1.17) under some additional assumption on the “ZFK” nonlin-
earity f = f(x, y, u).

3.4.1 A unified proof of formula (3.1.17)

In this subsection, we assume that f = f(x, y, u) is a heterogenous “ZFK” nonlin-
earity. Namely, f = f(x, y, u) is a nonlinearity satisfying (3.1.5-3.1.6) and (3.1.8). We
will divide the proof of formula (3.1.17) into 3 steps:

Step 1. Under the assumptions (3.1.2), (3.1.3), and (3.1.4) on the domain Ω, the
diffusion matrix A, and the advection field q respectively, and having a nonlinearity f
satisfying the above assumptions, Theorem 3.1.6 yields that for c = c∗Ω,A,q,f (e), there
exists a solution u∗ = u∗(t, x, y) of (4.1.8) such that u∗t (t, x, y) > 0 for all (t, x, y) ∈
R× Ω. In other words, the function φ∗ defined by

φ∗(s, x, y) = u∗
(
s− x · e
c∗(e)

, x, y

)
, (s, x, y) ∈ R× Ω

is increasing in s ∈ R. Owing to section 3.2, φ∗ satisfies

F [φ∗] + q · ∇x,yφ
∗ + (q · ẽ − c∗(e))φ∗s,+f(x, y, φ∗) = 0 in R× Ω (3.4.1)

together with boundary and periodicity conditions{
φ∗ is L−periodic with respect to x,
ν · A(∇x,yφ

∗ + ẽφ∗s) = 0 on R× Ω.
(3.4.2)
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Moreover, (3.4.1) implies that for all (s, x, y) ∈ R× Ω,

c∗(e) =
F [φ∗](s, x, y) + q · ∇x,yφ

∗(s, x, y) + f(x, y, φ∗)

∂sφ∗(s, x, y)
+ q(x, y) · ẽ

= Rφ∗(s, x, y),
(3.4.3)

and hence

c∗(e) ≥ inf
ϕ∈E

sup
(s,x,y)∈R×Ω

F [ϕ](s, x, y) + q · ∇x,yϕ(s, x, y) + f(x, y, ϕ)

∂sφ(s, x, y)
+ q(x, y) · ẽ.

In order to prove equality, we argue by contradiction. Assuming that the above
inequality is strict, one can find δ > 0 such that

c∗(e)− δ > inf
ϕ∈E

sup
(s,x,y)∈R×Ω

F [ϕ](s, x, y) + q · ∇x,yϕ(s, x, y) + f(x, y, ϕ)

∂sϕ(s, x, y)
+ q(x, y) · ẽ.

(3.4.4)
To draw a contradiction, we are going to approach the “ZFK” nonlinearity f by a
sequence of “combustion” nonlinearities (fθ)θ and the minimal speed of propagation
by the sequence of speeds (cθ)θ corresponding to the functions (fθ)θ. The details will
appear in the next step.

Step 2. Let χ be a C1(R) function such that 0 ≤ χ ≤ 1 in R, χ(u) = 0 for all u ≤ 1,

0 < χ(u) < 1 for all u ∈ (1, 2) and χ(u) = 1 for all u ≥ 2. Assume moreover that χ is
non-decreasing in R. For all θ ∈ (0, 1/2), let χθ be the function defined by

∀u ∈ R, χθ(u) = χ(u/θ).

The function χθ is such that 0 ≤ χθ ≤ 1, 0 < χθ < 1 in (−∞, θ], 0 < χθ < 1 in (θ, 2θ)

and χθ = 1 in [2θ,+∞). Furthermore, the functions χθ are non-increasing with respect
to θ, namely, χθ1 ≥ χθ2 if 0 < θ1 ≤ θ2 < 1/2.

We set
fθ(x, y, u) = f(x, y, u)χθ(u) for all (x, y, u) ∈ Ω× R.

In other words, we cut off the source term f near u = 0.

For each θ ∈ (0, 1/2), the function fθ is a nonlinearity of “combustion” type that
satisfies (3.1.5-3.1.6) and (3.1.7) with the ignition temperature θ. Therefore, Theorem
3.1.5 yields that the existence of a classical solution (cθ, uθ) of (4.1.8) with the nonlin-
earity fθ. Furthermore, the function uθ is increasing in t and unique up to translation
in t and the speed cθ is unique and positive.
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It was proved, through Lemma 6.1 and Lemma 6.2 in Berestycki, Hamel [1], that
the speeds cθ are non-increasing with respect to θ and

cθ ↗ c∗(e) as θ ↘ 0.

Consider a sequence θn ↘ 0. Then, there exists n0 ∈ N such that cθn ≥ c∗(e) − δ for
all n ≥ n0 (or equivalently θn ≤ θn0).

In what follows, we fix θ such that θ < θn0 . One consequently gets cθ ≥ c∗(e)−δ. On
the other hand, it follows, from the construction of fθ, that f ≥ fθ in Ω×R. Together
with (3.4.4), one obtains

cθ > inf
ϕ∈E

sup
(s,x,y)∈R×Ω

F [ϕ](s, x, y) + q · ∇x,yϕ(s, x, y) + fθ(x, y, ϕ)

∂sϕ(s, x, y)
+ q(x, y) · ẽ.(3.4.5)

Thus, there exists a function ψ ∈ E such that

cθ >
F [ψ](s, x, y) + q · ∇x,yψ(s, x, y) + fθ(x, y, ψ)

∂sψ(s, x, y)
+ q(x, y) · ẽ. (3.4.6)

However, ψs(s, x, y) > 0 for all (s, x, y) ∈ R × Ω. Thus, the inequality (3.4.6) can be
rewritten as

Lψ(s, x, y) + fθ(x, y, ψ) < 0 in R× Ω, (3.4.7)

with ψ ∈ E and L is the operator defined in (3.2.2) for c = cθ.

For each τ ∈ R, we define the function ψτ by

ψτ (s, x, y) = ψ(s+ τ, x, y) for all (s, x, y) ∈ R× Ω.

Since the coefficients of L are independent of s, the later inequality also holds for all
functions ψτ with τ ∈ R. That is,

Lψτ (s, x, y) + fθ(x, y, ψ
τ ) < 0 in R× Ω. (3.4.8)

Step 3. For the fixed θ (in step 2), the function fθ is a “combustion” nonlinearity
whose ignition temperature is θ. There corresponds a solution (cθ, uθ) of (4.1.8) within
the nonlinear source fθ. We define φθ by

φθ(s, x, y) = uθ

(
s− x · e

cθ
, x, y

)
, for all (s, x, y) ∈ R× Ω.
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Referring to section 3.2, one knows that φθ ∈ E and thus it satisfies the following
equation

Lφθ(s, x, y) + fθ(x, y, φθ) = 0 in R× Ω. (3.4.9)

Now, the situation is exactly the same as that in step 2 of the proof of formula
(3.1.15) because the nonlinearity fθ is of “combustion” type. The little difference is
that f (in step 2 of the proof of formula (3.1.15)) is replaced here by fθ, and the
function φ of equation (3.3.3) is replaced by the function φθ of (3.4.9). Thus, following
the arguments of subsection 3.3.1 and using the same tools of “step 2” as in the proof
of formula (3.1.15), one gets that the (3.4.4) is impossible and that completes the proof
of formula (3.1.17). �

Remark 3.4.1 We found that one can use another argument (details are below), dif-
ferent from the sliding method, in order to prove the min−max formulæ for the speeds
of propagation whenever f is a homogenous (i.e f = f(u)) nonlinearity of “combus-
tion” or “ZFK”type and Ω = RN . Meanwhile, the sliding method, that we used in the
proofs of formulæ (3.1.15) and (3.1.17), is a unified argument that works in the general
heterogenous periodic framework.

Another proof of formulæ (3.1.15) and (3.1.17) in a particular framework:
Here, we assume that f = f(u), and Ω = RN . In fact, following the same procedure of
“step 1” in the previous proof, one gets the inequality

c∗(e) ≥ inf
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y).

Now, to prove the other sense of inequality, we assume that

c∗(e) > inf
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y),

and we assume that f is of “ZFK” type 2.
Then, as it was explained in “step 2” of the previous proof, one can find ψ ∈ E,

δ > 0, θ > 0, and d > 0 such that c∗(e)− δ < d < cθ < c∗(e) where

∀(s, x, y) ∈ R× Ω, d > c∗(e)− δ > Rψ(s, x, y),

and fθ(u) = f(u)χθ(u) ≤ f(u) for all u ∈ R is of “combustion” type (cθ is the speed of
propagation, in the direction of −e, of pulsating travelling fronts solving (4.1.8) with
the nonlinearity fθ and the domain Ω = RN).

2. The case where f is of “combustion” type follows in a similar way.
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Hence, for all (t, x, y) ∈ R× RN ,

d >
F [ψ](s, x, y) + q · ∇x,yψ(s, x, y) + fθ(ψ)

∂sψ(s, x, y)
+ q(x, y) · ẽ. (3.4.10)

Let ũ(t, x, y) = ψ(x · e + dt, x, y). As it was explained in section 3.2, the function ũ

satisfies

ũt −∇ · (A(x, y)∇ũ)− q(x, y) · ∇ũ− fθ(ũ) > 0, t ∈ R, (x, y) ∈ Ω,

ν · A ∇ũ(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,

∀ k ∈
d∏
i=1

LiZ, ∀ (t, x, y) ∈ R × Ω, ũ(t+
k · e
d
, x, y) = ũ(t, x+ k, y),

0 ≤ ũ ≤ 1.

(3.4.11)

Let 0 ≤ u0(x, y) ≤ 1 be a function in C(RN) such that u0(x, y)→ 0 as x · e→ −∞,
and u0(x, y) → 1 as x · e → +∞, uniformly in y and all directions of Rd which are
orthogonal to e. Let u be a pulsating front propagating in the direction of −e with the
speed cθ and solving the initial data problem

ut = ∇ · (A(x, y)∇u) + q(x, y) · ∇u+ fθ(u), t > 0, (x, y) ∈ Ω,

u(0, x, y) = u0(x, y),

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

(3.4.12)

Having fθ(u) as a “combustion” nonlinearity, it follows from J. Xin [19] (Theorem 3.5)
and Weinberger [18], that

∀r > 0, lim
t→+∞

sup
|x|≤r

u(t, x− cte, y) = 0 uniformly in y, for every c > cθ,

and lim
t→+∞

inf
|x|≤r

u(t, x− cte, y) = 1 uniformly in y, for every c < cθ.
(3.4.13)

This means that the speed of propagation cθ corresponding to (4.1.8) is equal to
the spreading speed in the direction of −e when the nonlinearity is of “combustion”
type and the initial data u0 satisfies the above conditions.

For all (t, x, y) ∈ [0,+∞)×Ω, let w(t, x, y) = ũ(t, x, y)− u(t, x, y). It follows, from
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(3.4.16) and (3.4.17), that
wt −∇ · (A(x, y)∇w)− q(x, y) · ∇w + bw > 0, t > 0, (x, y) ∈ Ω,

∀(x, y) ∈ Ω, w(0, x, y) ≥ 0,

ν · A ∇w(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,

(3.4.14)

for some b = b(t, x, y) ∈ C(R × Ω). The parabolic maximum principle implies that
w ≥ 0 in [0,+∞)× Ω. In other words,

∀(t, x, y) ∈ [0,+∞)× Ω, u(t, x, y) ≤ ũ(t, x, y).

However, for all c > d,

lim
t→+∞

ũ(t, x− cte, y) = lim
t→+∞

ψ(x · e+ (d− c)t, x− cte, y) = 0

locally in x and uniformly in y (since ψ ∈ E). Consequently,

∀c > d, ∀r > 0, lim
t→+∞

sup
|x|≤r

u(t, x− cte, y) = 0 uniformly in y.

Referring to (3.4.18), one concludes that d ≥ cθ which is impossible (d < cθ). Therefore,
our assumption that c∗(e) > inf

ϕ∈E
sup

(s,x,y)∈R×Ω

Rϕ(s, x, y) is false and that completes the

proof of formula (3.1.17) in the case where f = f(u) and Ω = RN . �

3.4.2 Another proof of formula (3.1.17) under an additional
assumption on f

In the subsection 3.4.1, we proved formula (3.1.17) in the case where the nonlinearity
f is a general L−periodic with respect to x “ZFK” nonlinearity. The proof of this
formula becomes simpler if we add an assumption of non-degeneracy on the nonlinearity
f at u = 0. Precisely, we assume that the nonlinearity f satisfies (3.1.5-3.1.6), (3.1.8)
together with the additional assumption

lim inf
u→0+

f(x, y, u)

u
> 0. (3.4.15)

First, following the same procedure of “step 1” in subsection 3.4.1, one gets the
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inequality
c∗(e) ≥ inf

ϕ∈E
sup

(s,x,y)∈R×Ω

Rϕ(s, x, y).

Now, to prove the other sense of inequality, we assume that

c∗(e) > inf
ϕ∈E

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y).

Then, one can find 0 < d < c∗(e) and ψ ∈ E such that

∀(s, x, y) ∈ R× Ω, d > Rψ(s, x, y).

For each (t, x, y) ∈ R× Ω, let ũ(t, x, y) = ψ(x · e+ dt, x, y). It follows from section 3.2
that the function ũ satisfies

ũt −∇ · (A(x, y)∇ũ)− q(x, y) · ∇ũ− f(x, y, ũ) > 0, t ∈ R, (x, y) ∈ Ω,

ν · A ∇ũ(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω,

∀ k ∈
d∏
i=1

LiZ, ∀ (t, x, y) ∈ R × Ω, ũ(t+
k · e
d
, x, y) = ũ(t, x+ k, y),

0 ≤ ũ ≤ 1.

(3.4.16)

Let u0(x, y) be a nonnegative function in C(Ω) such that u0(x, y) = 0 for all (x, y)

in Ω with x · e ≤ 0, inf
(x,y)∈Ω, x·e>L

u0(x, y) > 0 (for some L > 0) and such that

∀(x, y) ∈ Ω, u0(x, y) ≤ ũ(0, x, y).

Let u be a classical solution of the problem
ut = ∇ · (A(x, y)∇u) + q(x, y) · ∇u+ f(x, y, u), t > 0, (x, y) ∈ Ω,

u(0, x, y) = u0(x, y),

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂Ω.

(3.4.17)

Under the conditions (3.1.5-3.1.6), (3.1.8) and (3.4.15) on the nonlinearity f, the results
of Weinberger [18] imply that

∀r > 0, lim
t→+∞

sup
|x|≤r,(x−cte,y)∈Ω

u(t, x− cte, y) = 0 for every c > c∗(e),

and lim
t→+∞

inf
|x|≤r,(x−cte,y)∈Ω

u(t, x− cte, y) = 1 for every c < c∗(e).
(3.4.18)
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This means that the minimal speed of propagation c∗(e) corresponding to (4.1.8) is
equal to the spreading speed when the “ZFK” nonlinearity f satisfies (3.4.15) and u0

satisfies the above conditions.
For all (t, x, y) ∈ R×Ω, let w(t, x, y) = ũ(t, x, y)−u(t, x, y). It follows, from (3.4.16)

and (3.4.17), that
wt −∇ · (A(x, y)∇w)− q(x, y) · ∇w + b(t, x, y)w > 0, t > 0, (x, y) ∈ Ω,

∀(x, y) ∈ Ω, w(0, x, y) ≥ 0,

ν · A ∇w(t, x, y) = 0, t ≥ 0, (x, y) ∈ ∂Ω,

(3.4.19)

for some b = b(t, x, y) ∈ C([0,+∞) × Ω). The parabolic maximum principle implies
that w ≥ 0 in [0,+∞)× Ω. In other words,

∀(t, x, y) ∈ [0,+∞)× Ω, u(t, x, y) ≤ ũ(t, x, y).

However, for all c > d,

lim
t→+∞

ũ(t, x− cte, y) = lim
t→+∞

ψ(x · e+ (d− c)t, x− cte, y) = 0

locally in x and uniformly in y (since ψ ∈ E). Consequently,

∀c > d, ∀r > 0, lim
t→+∞

sup
|x|≤r,(x−cte,y)∈Ω

u(t, x− cte, y) = 0.

Referring to (3.4.18), one concludes that d ≥ c∗(e) which is impossible (d < c∗(e)).
Therefore, our assumption that c∗(e) > inf

ϕ∈E
sup

(s,x,y)∈R×Ω

Rϕ(s, x, y) is false and that

completes the proof of formula (3.1.17) in the case where lim inf
u→0+

f(x, y, u)

u
> 0 for

all (x, y) ∈ Ω. �

3.5 Another proof of formulæ (3.2.7) and (3.2.9) us-
ing sub and super solutions arguments in regular-
ized elliptic equations

In this section, the nonlinear source f can be of “combustion” or “ZFK” type.
Moreover, we assume that the restriction of the nonlinearity f in (4.1.8) is
C1,δ(Ω× [0, 1]). In fact, this assumption insures that any classical solution u = u(t, x, y)
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of a reaction-advection-diffusion equation, having f = f(x, y, u) as a nonlinearity, is
of class C2(R× Ω). In Remark 3.2.2, the proof of the min−max formulæ (3.2.7) and
(3.2.9) was direct owing to the min−max formulæ (3.1.15-3.1.17) and to the estimate
(3.2.6). In what follows, we are going to give another proof of these formulæ (over the
subset E ′ of E) without using formulæ (3.1.15) and (3.1.17).

As it was mentioned in Remark 3.2.2, there exists a constant M > 0 such that

∀(s, x, y) ∈ R× Ω, |∂ssφ(s, x, y)| ≤M ∂sφ(s, x, y), (3.5.1)

where φ(s, x, y) = u

(
s− x · e
c(e)

, x, y

)
and (c(e), u) is the unique pulsating travelling

front solving (4.1.8) with a “combustion” nonlinearity. Similarly, there exists a constant
M∗ > 0 such that

∀(s, x, y) ∈ R× Ω, |∂ssφ∗(s, x, y)| ≤M∗ ∂sφ
∗(s, x, y), (3.5.2)

where φ∗(s, x, y) = u∗
(
s− x · e
c∗(e)

, x, y

)
and (c∗(e), u∗) is the pulsating travelling front

solving (4.1.8) with a “ZFK” nonlinearity. Consequently, φ ∈ E ′ and φ∗ ∈ E ′ and they
satisfy (see section 3.2)

∀(s, x, y) ∈ R× Ω, c(e) = Rφ(s, x, y) and c∗(e) = Rφ∗(s, x, y).

Thus,
c(e) ≥ inf

ϕ∈E′
sup

(s,x,y)∈R×Ω

Rϕ(s, x, y)

when f is of the “combustion” type, and

c∗(e) ≥ inf
ϕ∈E′

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y)

when f is of the “ZFK” type.

To complete the proofs of formulæ (3.2.7) and (3.2.9), we assume that the above
two inequalities are strict and we search a contradiction. However, in what follows,
we will consider f = f(x, y, u) as a “ZFK” nonlinearity whose restriction is of class
C1,δ(Ω× [0, 1]). In fact, the same ideas can be imitated in the “combustion” case after
replacing c∗(e) by c(e), u∗ by u and φ∗ by φ.

Now, after assuming that c∗(e) > inf
ϕ∈E′

sup
(s,x,y)∈R×Ω

Rϕ(s, x, y), there exists ψ ∈ E ′
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such that
∀ (s, x, y) ∈ R× Ω, c∗(e) > Rψ(s, x, y).

Then, one can find 0 < d′ < c∗(e) such that

∀ (s, x, y) ∈ R× Ω, c∗(e) > d′ > Rψ(s, x, y).

However,
ψss
ψs

is bounded over R × Ω (ψ ∈ E ′). Hence, there exists ε0 > 0 (small

enough) and 0 < d′ < d < c∗(e) such that

∀ 0 < ε ≤ ε0, ∀(s, x, y) ∈ R× Ω, d ≥ εψss(s, x, y)

ψs(s, x, y)
+Rψ(s, x, y). (3.5.3)

In other words,

∀ 0 < ε ≤ ε0, ∀ (s, x, y) ∈ R×Ω, εψss(s, x, y) +Ld ψ(s, x, y) + f(x, y, ψ) ≤ 0, (3.5.4)

where

Ld = ∇x,y · (A∇x,y) + (ẽAẽ)∂ss +∇x,y · (Aẽ∂s) + ∂s(ẽA∇x,y) + q · ∇x,y + (q · ẽ− d)∂s.

We notice that Ld is a degenerated elliptic operator while

ε∂ss + Ld = (ẽAẽ+ ε)∂ss +∇x,y · (A∇x,y) +∇x,y · (Aẽ ∂s)

+∂s(ẽA∇x,y) + q · ∇x,y + (q · ẽ − d)∂s

is a uniformly elliptic operator. Thus, εψss plays the role of a regularizing term in
(3.5.4).

For each 0 < ε ≤ ε0 (small enough), we consider the uniformly elliptic problem
(with generalized Neumann boundary conditions)

(Pε)



ε∂ssw
ε(s, x, y) + Ldw

ε(s, x, y) + f(x, y, wε) = 0 in R× Ω,

ν · (ẽwεs +∇x,yw
ε) = 0 on R× ∂Ω,

wε is L−periodic with respect to x,

wε(−∞, x, y) = 0 and wε(+∞, x, y) = 1 uniformly in (x, y) ∈ Ω,

0 ≤ wε ≤ ψ < 1 in R× Ω,

wεs > 0 in R× Ω,

(3.5.5)
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with the normalization condition

max
(x,y)∈Ω

wε(0, x, y) =
1

2
. (3.5.6)

In the “combustion” case, we consider the same problem (3.5.5) but with the normal-
ization condition

max
(x,y)∈Ω

wε(0, x, y) = θ, (3.5.7)

where θ is the ignition temperature of f (see (3.1.7)).
We have the following

Lemma 3.5.1 For each ε > 0, (3.5.5) admits a classical solution wε = wε(s, x, y)

satisfying (3.5.6) in the “ZFK” case or (3.5.7) in the “combustion” case. Moreover,
taking in both cases, vε(t, x, y) = wε(x · e+ dt, x, y), then for each compact subset K of
Ω, there exists a constant C(K), only depending on K, such that∫

R×K

[
(vεt )

2 + |∇x,yv
ε|2
]
dt dx dy ≤ C(K)

(
1 + ||q||2∞

2α1

+ 2 max
(x,y)∈Ω

F (x, y, 1)

)
,

(3.5.8)

where α1 > 0 is given in (3.1.3) and F (x, y, t) =

∫ t

0

f(x, y, τ) dτ .

In fact, the “a priori” estimate (3.5.8) was given in Lemma 5.11 of Berestycki, Hamel
[1]. The proof of Lemma 3.5.1 will be postponed to the end of this section.

Going back to the proof of formula (3.2.9), we call (for each 0 < ε ≤ ε0)

vε(t, x, y) = wε(x · e+ dt, x, y), for all (t, x, y) ∈ R× Ω,

where wε = wε(s, x, y) is a classical solution of (3.5.5) whose existence follows from
Lemma 3.5.1. It follows from (3.5.5) that for each ε, vε is a classical solution of

vεt +∇ · (A∇x,y v
ε) +

ε

d2
vεtt + q · ∇x,y v

ε + f(x, y, vε) = 0 in R× Ω,

ν · A∇x,yv
ε = 0 on R × ∂Ω,

∀ k ∈
i=d∏
i=1

LiZ, ∀ (t, x, y) ∈ R × Ω, vε(t+
k · e
d
, x, y) = vε(t, x+ k, y),

max
x·e=−dt, (t,x,y)∈R×Ω

vε(t, x, y) =
1

2
.

(3.5.9)

Moreover, each vε is increasing in t since vεt = dwεs in R × Ω and wε is increasing in
s. Furthermore, vε(t, x, y) → 0 (resp. vε(t, x, y) → 1) as t → −∞ (resp. t → +∞) in
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C2
loc(Ω).

Let {εn}n ∈ (0, ε0] be a sequence such that εn → 0+ as n → +∞. It follows, from
(3.5.8), that {vεn}n is bounded in H1(R × K) for every compact K ⊂ Ω. Thus, there
exists a function v ∈ H1

loc(R×Ω) such that, up to extraction of some subsequence, the
functions vεn satisfy: vεn → v strongly in L2

loc(R× Ω), vεn ⇀ v weakly in H1
loc(R× Ω)

and vεn → v a.e in R × Ω as n → +∞. From parabolic regularity, the function v is
then a classical solution of

vt +∇ · (A∇x,yv) + q · ∇x,yv + f(x, y, v) = 0 in R × Ω,

ν · A∇x,yv = 0 on R × ∂Ω,

∀ k ∈ L1Z× · · · × LdZ, ∀ (t, x, y) ∈ R × Ω, v(t+
k · e
d
, x, y) = v(t, x+ k, y),

0 ≤ v ≤ 1 and vt ≥ 0 in R × Ω.

(3.5.10)
Furthermore, from the normalization of vε on the set {x · e = −dt} and from the
monotonicity of the functions vε in t, it follows that

v(t, x, y) ≤ 1

2
for all (t, x, y) such that x · e ≤ −dt. (3.5.11)

On the other hand, (3.5.9) is an elliptic regularization of a parabolic equation. From
Theorem A.1 in [1] ( it is easy to check that the assumptions are satisfied, especially
the functions vε are C3(R × Ω) from the regularity assumptions and from standard
elliptic estimates), the following gradient estimates hold :

||∇x,yv
ε||L∞ (R×Ω) ≤ C, (3.5.12)

where C is independent of ε.

Since maxx.e=−dt, (t,x,y)∈R×Ω v
ε(t, x, y) = 1/2, and vε(t+k· e/c, x, y) = vε(t, x+ k, y)

in R × Ω for all k ∈
∏d

i=1 LiZ, (hence it suffices to consider vε on a set which is
bounded in the (t, x, y) variables), it follows that there exists a bounded sequence
(tn, xn, yn) ∈ R × C such that xn · e = −d tn and vεn(tn, xn, yn) = 1/2. Therefore,
the sequence (tn, xn, yn) converges, up to extraction of some subsequence, to a point
(t, x̄, ȳ) ∈ R × C such that x̄ · e = −d t̄. We claim that v(t̄, x̄, ȳ) ≥ 1/2. Thus, we fix
η > 0, and we take 0 < r ≤ η/C. From the uniform gradient estimates (3.5.12), we have
vεn(tn, x, y) ≥ 1/2 − η, for all n and for all (x, y) ∈ Br(xn, yn) ∩ Ω, where Br(xn, yn)

denotes the euclidian closed ball in RN of radius r and center (xn, yn). Consequently,
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as vε is increasing in t, it follows that for n large enough,

vεn (t, x, y) ≥ 1/2− η for all t ≥ tn and for all (x, y) ∈ Br/2(x̄, ȳ).

Since the functions vεn converge almost everywhere to the continuous function v, then

v(t, x, y) ≥ 1/2− η for all t ≥ t̄ and for all (x, y) ∈ Br/2(x̄, ȳ).

However, η > 0 was arbitrary. It follows that v(t̄, x̄, ȳ) ≥ 1/2. From (3.5.11) and the
(t, x) periodicity of the function v, one concludes that

max
x.e=−d t, (x,y)∈R×Ω

v(t, x, y) = 1/2. (3.5.13)

Lastly, from standard parabolic estimates (the coefficients of the parabolic equation
(3.5.10) are independent of t) and from the monotonicity of v with respect to t, one
gets that v(t, x, y) → v±(x,y) in C2

loc(Ω) as t → ±∞, and the functions v± satisfy
∇ · (A∇v±) + q.∇ v± + f(x, y, v±) = 0 in Ω

ν · A∇v± = 0 on ∂Ω

v± is L− periodic with respect to x,
(3.5.14)

and 0 ≤ v− ≤ v+ ≤ 1. Integrating the first equation of (3.5.14) by parts over C and
owing to (3.1.4), one then obtains∫

C

f(x, y, v±) dx dy = 0.

Since f is nonnegative and continuous over Ω × [0, 1], it follows that f(x, y, v±) = 0

for all (x, y) ∈ Ω. Now, we multiply (3.5.14) by v± and integrate by parts over C. It
follows that ∫

C

∇v± · A∇v± = 0.

Together with (3.1.3), one gets that v± are constants. Moreover, it follows from (3.5.13)
and from the monotonicity of v that 0 ≤ v− ≤ 1/2 ≤ v+ ≤ 1. The nonlinearity
f = f(x, y, u) is a “ZFK” nonlinearity (satisfying (3.1.5) and (3.1.8)). Consequently,
v− = 0 and v+ = 1.

Furthermore, the (t, x) periodicity of the classical solution v of (3.5.10) together
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with the above notes imply that

lim
x·e→+∞

v(t, x, y) = 1 and lim
x·e→−∞

v(t, x, y) = 0

uniformly in y and all directions of Rd which are orthogonal to e (in fact, for all y,
a sequence {(xn, y)}n ∈ Ω such that xn · e → ±∞ as n → +∞ can be written as
(xn = x̃n + kn, y) for all n, where x̃n ∈ C̄ and kn ∈ L1Z× · · ·LdZ. Thus, kn · e→ ±∞
as xn · e → ±∞ because the sequence (x̃n · e)n will be bounded. Owing to the above

notes, one then has v(t, xn, y) = v(t+
kn · e
d

, x̃n, y)→ 0 (resp. 1) as xn · e → −∞
(resp. xn · e→ +∞) locally in t and uniformly in y and all directions of Rd which are
orthogonal to e).

Eventually, the function v = v(t, x, y) is a pulsating travelling front solving (4.1.8)
and propagating with a speed d < c∗(e) which contradicts the minimality of c∗(e) in
the “ZFK” case. Therefore, our assumption that c∗(e) > inf

ϕ∈E′
sup

(s,x,y)∈R×Ω

Rϕ(s, x, y) is

false and that completes the proof of formula (3.2.9). �

Remark 3.5.2 (About the proof of (3.2.7) in the “combustion” case) If f =

f(x, y, u) is a “combustion” nonlinearity satisfying (3.1.5-3.1.6) and (3.1.7) with an
ignition temperature θ, and whose restriction is C1(Ω × [0, 1]), we imitate the above
proof of formula (3.2.9) in order to prove formula (3.2.7). However, there will be a
difference in the normalization conditions that we assume on the functions wε and vε

to avoid trivial solutions. In details, we replace the condition max
(x,y)∈Ω

wε(0, x, y) = 1/2

in (3.5.5) by the condition max
(x,y)∈Ω

wε(0, x, y) = θ and this leads to the condition

max
x·e=−dt, (t,x,y)∈R×Ω

vε(t, x, y) = θ.

Then, using the same gradient estimates (3.5.12) together parabolic regularity results
and uniform parabolic estimates, the functions vεn → v (weakly in H1

loc(R × Ω) and
strongly in L2

loc(R × Ω)) as εn → 0+, where v will be a classical solution of the same
problem (3.5.10) but with the normalization condition

max
x·e=−dt, (t,x,y)∈R×Ω

v(t, x, y) = θ.

Thus, v± will be constants and they will satisfy

∀ (x, y) ∈ Ω, f(x, y, v±) = 0,
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with 0 ≤ v− ≤ v+ ≤ 1. Moreover, the function v(t, x, y) will satisfy (as it was done in
section 5 of [1], equation (5.47))

∀(t, x, y) ∈ R× Ω, x · e+ dt ≤ 0⇒ v(t, x, y) ≤ eλ(x·e+dt)ϕ(x, y), (3.5.15)

for some positive C2(Ω) function ϕ which is L−periodic with respect to x such that
min(x,y)∈Ω ϕ(x, y) = min(x,y)∈C ϕ(x, y) = θ. Consequently, v(t, x, y)→ 0 as t→ −∞ or
as x · e → −∞ (locally in t) uniformly in y and in the directions of Rd orthogonal to
e. Thus, v− = 0.

If v+ ≤ θ, then the maximum principle and the normalization condition
maxx·e=−dt, (t,x,y)∈R×Ω v(t, x, y) = θ will yield that v(t, x, y) = θ in R×Ω. However, this
will contradict the fact that v− = 0. Thus, one should have v+ > θ and f(x, y, v+) = 0.

From (3.1.7), one should have v+ = 1.

Eventually, the function v = v(t, x, y) will be a pulsating travelling front solving
(4.1.8) taken with the “combustion” nonlinearity f whose speed equals d < c(e). How-
ever, this will contradict with the uniqueness of the pulsating front (c(e), u) that follows
from Theorem 3.1.5. �

The following result will be needed in the proof of Lemma 3.5.1:

Lemma 3.5.3 Let c ∈ R, a and ε be two positive real numbers, and let

Σa = (−a, a) × Ω and Σ̃a = Σa \ ({±a} × ∂Ω).

Assume that f = f(x, y, u) is a nonnegative Lipschitz-continuous nonlinearity defined
on R × Ω, which is L−periodic with respect x and such that f = 0 in Ω × (−∞, 0] ∪
[1,+∞). Assume, furthermore, that A and q = q(x, y) satisfy (3.1.3) and (3.1.4) re-
spectively. Let ϕ be a solution in C(Σa) ∩ C2(Σ̃a) of

Lε,cϕ + f(x, y, ϕ) = 0 in Σa,

ν · A(ẽϕs + ∇x,yϕ) = 0 on (−a, a) × ∂Ω,

ϕ is L−periodic with respect to x,

∀ (x, y) ∈ Ω, ϕ(−a, x, y) = 0 and ϕ(a, x, y) = ϕ̃(a, x, y),

ϕ ≤ ϕ̃ in Σa,

(3.5.16)

where
Lε,c = (ẽAẽ+ ε)∂ss +∇x,y · (A∇x,y) +∇x,y · (Aẽ ∂s)

+∂s(ẽA∇x,y) + q · ∇x,y + (q · ẽ − c)∂s
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is a regularized elliptic operator, and ϕ̃ = ϕ̃(s, x, y) is defined over Σa such that

Lε,cϕ̃ + f(x, y, ϕ̃) ≤ 0 in Σa,

ν · A(ẽϕ̃s + ∇x,yϕ̃) = 0 on (−a, a) × ∂Ω,

ϕ̃ is L−periodic with respect to x,

ϕ̃ > 0 in Σa and ϕ̃ is nondecreasing with respect to s.

(3.5.17)

Then, the function ϕ = ϕ(s, x, y) is increasing in s and it is the unique solution of
(3.5.16) in C(Σa) ∩ C2(Σ̃a).

Proof. We use, in this proof, the sliding method of Berestycki and Nirenberg [4].
First, let us mention that since f = 0 in Ω × (−∞, 0] ∪ [1,+∞), then the elliptic

maximum principle and the Hopf lemma yield that 0 < ϕ < 1 in (−a, a) × Ω. Fur-
thermore, the maximum principle and the Hopf lemma, applied on the function ϕ− ϕ̃,
yield that

0 < ϕ(s, x, y) < ϕ̃(s, x, y) for all (s, x, y) ∈ (−a, a)× Ω.

For any λ ∈ (0, 2a), let ϕλ be the function defined by

∀ (s, x, y) ∈ Σλ
a, ϕ

λ(s, x, y) = ϕ(s+ 2a− λ, x, y),

with Σλ
a := (−a,−a + λ) × Ω.

In order to prove that ϕ is increasing with respect to the variable s in Σa, it suffices
to prove that

ϕ < ϕλ in Σλ
a for all λ ∈ (0, 2a). (3.5.18)

Owing to the continuity and the L−periodicity, with respect to x, of the function ϕ

and since ϕ(−a, ., .) = 0 and ϕ(a, ., .) = 1, it follows that (3.5.18) is true for small λ.
Let us now increase λ and set

λ∗ = sup{λ ∈ (0, 2a); ϕ < ϕµ in Σλ
a for all µ ∈ (0, λ)} > 0.

To complete the proof, we are going to prove that λ∗ = 2a. Thus, we assume, to the
contrary, that λ∗ < 2a. By continuity, one has ϕ ≤ ϕλ

∗ in Σλ∗
a . On the other hand,

there exist two sequences λn ↘ λ∗ and (sn, xn, yn) ∈ Σλn
a such that ϕ(sn, xn, yn) ≥

ϕλn(sn, xn, yn). However, ϕ is L−periodic in x. Hence, we can assume that (xn, yn) ∈
C, and consequently, (sn, xn, yn) → (s̄, x̄, ȳ) ∈ Σλ∗

a . Passing to the limit as n→ +∞,
one gets ϕ(s̄, x̄, ȳ) = ϕλ

∗
(s̄, x̄, ȳ).
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Let z(s, x, y) = ϕ(s, x, y)−ϕλ∗(s, x, y) for all Σλ∗
a . The function z is nonpositive and

vanishes at the point (s̄, x̄, ȳ). Since the equation (3.5.16) is invariant under translation
with respect to s and since the function f is Lipschitz-continuous, the nonpositive
function z satisfies

(ẽAẽ+ ε)zss +∇x,y · (A∇x,yz) +∇x,y(Aẽzs)

+∂s(ẽA∇x,yz) + q · ∇x,yz + (q · ẽ− c)zs + bz = 0 in Σλ∗
a ,

ν · A∇z = 0 on (−a,−a + λ∗) × ∂Ω,

(3.5.19)
for some bounded function b = b(s, x, y). Furthermore,

z(−a, x, y) = −ϕ(a− λ∗ x, y) < 0 for all (x, y) ∈ Ω,

because ϕ is continuous and positive on (−a, a) × Ω and because λ∗ < 2a. Moreover,
for all (x, y) ∈ Ω,

z(−a + λ∗, x, y) = ϕ(−a+ λ∗, x, y)− ϕ̃(a, x, y)

≤ ϕ(−a+ λ∗, x, y)− ϕ̃(−a+ λ∗, x, y) (ϕ̃ is nondecreasing in s)

< 0

after the note mentioned in the beginning of this proof. As a consequence, the point
(s̄, x̄, ȳ) where z vanishes lies in (−a,−a + λ∗) × Ω. But this is ruled out by (3.5.19)
and by referring to the strong maximum principle together with Hopf lemma.

Therefore, λ∗ = 2a, and ϕ is increasing in the variable s in Σλ∗
a .

Let us now turn to the proof of the uniqueness of the solution ϕ ∈ C(Σa) ∩ C2(Σ̃a)

of (3.5.16). Consider two solutions ϕ and ϕ′. By arguing as above and sliding ϕ′ with
respect to ϕ, it is found that ϕ(s, x, y) ≤ ϕ′(s+ 2a− λ, x, y) for all λ ∈ (0, 2a) and for
all (s, x, y) ∈ Σλ

a. Passing to the limit λ → 2a, one gets ϕ ≤ ϕ′ in Σa. On the other
hand, sliding ϕ with respect to ϕ′, it also follows that ϕ′ ≤ ϕ in Σa. Eventually, ϕ ≡ ϕ′

and the proof of Lemma 3.5.3 is complete. �

Proof of Lemma 3.5.1. The proof of the estimate (3.5.8) was given in details in
[1] (Lemma 5.11). In fact, this estimate follows after multiplying (3.5.5) by 1, ∂sw

ε,

and ∂sswε and then integrating by parts over [−B,B]× C for any B > 0. By passing
to the limit B → +∞ in the 3 obtained inequalities, and using the facts ∂swε → 0 and
∂ssw

ε → 0 uniformly in (x, y) ∈ Ω as s→ ±∞ together with the L−periodicity of the
functions wε with respect to x, one finally obtains the estimate (3.5.8).
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In what follows, we are going to prove the existence of a solution wε of (3.5.5)
for each 0 < ε ≤ ε0 whenever f is of the “ZFK” type. We mention that there is
only some little differences in proving the existence of the solution wε whenever f is
a “combustion” nonlinearity. We will comment, during this present proof, about these
differences when they exist.

We consider the regularized problem

εwεss(s, x, y) + Ldw
ε(s, x, y) + f(x, y, wε) = 0

in cylinders of the type

Σa = { (s, x, y), −a < s < a, (x, y) ∈ Ω},

which are bounded in the variable s. One shall then pass to the limit a→ +∞.

Let us fix a > 0. Going back to (3.5.4), we call for each r ∈ R,

ψr(s, x, y) = ψ(s− r, x, y),

for all (s, x, y) ∈ R × Ω. It follows from (3.5.4), whose coefficients are independent of
s, that ψr is a super solution for all r ∈ R, in the sense that,

ε∂ssψr(s, x, y) + Ld ψr(s, x, y) + f(x, y, ψr) ≤ 0.

Furthermore, for each r ∈ R, the function ψr ∈ E ′ since ψ ∈ E ′. In particular, ψr is
increasing in s and it satisfies ν · A(∇x,yψr + ẽ∂sψr) = 0 on R× ∂Ω.

Let, for all r ∈ R, hr be the positive constant defined by

0 < hr := min
(x,y)∈Ω

ψr(−a, x, y) ≤ 1.

The constant function hr clearly satisfies

ε∂sshr(s, x, y) + Ld hr(s, x, y) + f(x, y, hr) = f(x, y, hr) ≥ 0

in R×Ω, together with ν·A(∇x,yhr+ẽ∂shr) = 0 on R×∂Ω. Furthermore, hr ≤ ψr(s, x, y)

for all (s, x, y) ∈ Σa since the function ψr is increasing in s ∈ R.

From the general results of Berestycki and Nirenberg [4] (see also Lemma 5.1 in
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[1]), there exists a solution wr ∈ C(Σa) ∩ C2(Σa \ {±a} × ∂Ω) of

ε∂sswr + Ldwr + f(x, y, wr) = 0 in Σa

ν · A(∇x,ywr + ẽ∂swr) = 0 on (−a, a)× ∂Ω,

wr is L−periodic with respect to x,

wr(−a, x, y) = hr and wr(a, x, y) = ψr(a, x, y) for all (x, y) ∈ Ω,

0 < hr ≤ wr(s, x, y) ≤ ψr(s, x, y) ≤ ψ(s, x, y) ≤ 1 for all (s, x, y) ∈ Σa.

(3.5.20)

Moreover, Lemma 3.5.3 yields that wr is unique and increasing with respect to s. Lastly,
the same device as in Lemma 5.3 in [1] yields that wr is nonincreasing with respect to r,
and r 7→ wr is continuous with respect to r in C2,α

loc (Σa \{±a} × ∂Ω) (for all 0 < α < 1)
and in C(Σa).

Since 0 < hr ≤ wr ≤ ψr ≤ ψ ≤ 1 in Σa and hr → 1 (resp. ψr → 0) as r → −∞
(resp. r → +∞) there exists a unique rε,a ∈ R such that the function wε,a := wrε,a
satisfies (3.5.20) and

max
(x,y)∈Ω

wε,a(0, x, y) =
1

2
.

(when f is a “combustion” nonlinearity, we put the condition max
(x,y)∈Ω

wε,a(0, x, y) = θ

where θ is the ignition temperature of f, see(3.1.7)).

Fix ε in (0, ε0] and consider a sequence an → +∞. From standard elliptic estimates
up to the boundary, it follows that the sequence of functions wε,an converge, up to
extraction of some subsequence, in C2,α

loc (R × Ω) (for all 0 < α < 1) to a function wε

solving 

ε∂ssw
ε + Ldw

ε + f(x, y, wε) = 0 in R× Ω

ν · A(∇x,yw
ε + ẽ∂sw

ε) = 0 on R× ∂Ω,

wε is L−periodic with respect to x,

0 ≤ wε(s, x, y) ≤ ψ(s, x, y) ≤ 1 for all (s, x, y) ∈ R× Ω,

(3.5.21)

together with the condition

max
(x,y)∈Ω

wε(0, x, y) =
1

2
. (3.5.22)

Furthermore, wε is nondecreasing with respect to s.
(In the “combustion” case, (3.5.22) is replaced by max

(x,y)∈Ω
wε(0, x, y) = θ).

From the standard elliptic estimates, and from the monotonicity of wε with respect
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to s, it follows that wε → φ± in C2,α(Ω) as s→ ±∞ where the functions φ± satisfy
∇ · (A∇φ±) + q · ∇φ± + f(x, y, φ±) = 0 in Ω,

ν · A∇φ± = 0 on ∂Ω,

φ± is L−periodic with respect to x,
0 ≤ φ− ≤ φ+ ≤ 1.

(3.5.23)

Integrating by parts over the periodicity cell C leads to (due to (3.1.4))∫
C

f(x, y, φ±) dxdy = 0,

whence f(x, y, φ±) = 0 for all (x, y) ∈ Ω by continuity. Now multiply (3.5.23) by φ±
and integrate by parts over C. It follows that∫

Ω

∇φ± · A∇φ± = 0.

Owing to (3.1.3), one then gets φ± are constants. The last inequality of (3.5.21) to-
gether with the fact that ψ(−∞, x, y) = 0 uniformly in (x, y) ∈ Ω (ψ ∈ E ′) imply
that φ− = 0 whether in the “ZFK” or in the “combustion” case. Now, if f is a “ZFK”
nonlinearity, then f(x, y, φ+) = 0 yields that φ+ = 0 or φ+ = 1. The normalization
condition (3.5.22) implies that φ+ = 0 is impossible, and hence, φ+ = 1.

(In the “combustion” case, we note that the normalization condition max(x,y)∈Ω w
ε(0, x, y) =

θ and the monotonicity of wε in s yield that φ+ ≥ θ. Since f(x, y, φ+) = 0 in Ω, then
φ+ = θ or φ+ = 1. The first case would imply, thanks to the maximum principle,
that wε ≡ θ. That is impossible because wε(−∞, x, y) = 0 uniformly in (x, y) ∈ Ω.

Eventually, φ+ = 1 and wε → 1 uniformly in (x, y) ∈ Ω as s→ +∞).

Let us prove now that, for each 0 < ε ≤ ε0, the function wε solving (3.5.21) is
increasing in s ∈ R. In fact, it was mentioned above that wε is nondecreasing in
s. Assume, to the contrary, that there exists h > 0 and (s0, x0, y0) ∈ R × Ω such
that wε(s0 + h, x0, y0) = wε(s0, x0, y0). Let z be the nonnegative function defined by
z(s, x, y) := wε(s + h, x, y) − wε(s, x, y) over R × Ω. It follows, from (3.5.21), that z
satisfies 

ε∂ssz + Ld z + b(s, x, y)z = 0 in R× Ω,

ν · A(∇x,yw
ε + ẽ∂sz) = 0 on R× ∂Ω,

z ≥ 0 in R× Ω,

z(s0, x0, y0) = 0,
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for some bounded function b = b(s, x, y) ∈ C(R× Ω). The elliptic maximum principle
and the Hopf lemma imply that z ≡ 0 in R × Ω. In other words, there exists h > 0

such that wε(s, x, y) = wε(s+h, x, y) for all (s, x, y) ∈ R×Ω. However, this contradicts
with the fact that wε(−∞, ., .) = 0 and wε(+∞, ., .) = 1. Therefore, wε is increasing in
s and that completes the proof of Lemma 3.5.1. �
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Abstract. In this paper, some properties of the minimal speeds of pulsating Fisher-
KPP fronts in periodic environments are established. The limit of the speeds at the
homogenization limit is proved rigorously. Near this limit, generically, the fronts move
faster when the spatial period is enlarged, but the speeds vary only at the second order.
The dependence of the speeds on habitat fragmentation is also analyzed in the case of
the patch model.

4.1 Introduction and main hypotheses

In homogeneous environments, the probably most used population dynamics reaction-
diffusion model is the Fisher-KPP model [13, 23]. In a one-dimensional space, it cor-
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responds to the following equation

∂u

∂t
= D

∂2u

∂x2
+ u (µ− νu), t > 0, x ∈ R. (4.1.1)

The unknown u = u(t, x) is the population density at time t and position x, and
the positive constant coefficients D, µ and ν respectively correspond to the diffusivity
(mobility of the individuals), the intrinsic growth rate and the susceptibility to crowding
effects.

A natural extension of this model to heterogeneous environments is the Shigesada-
Kawasaki-Teramoto model [32],

∂u

∂t
=

∂

∂x

(
aL(x)

∂u

∂x

)
+ u (µL(x)− νL(x)u), t > 0, x ∈ R, (4.1.2)

where the coefficients depend on the space variable x in a L−periodic fashion:

Definition 4.1.1 (L-periodicity) Let L be a positive real number. We say that a
function h : R→ R is L-periodic if

∀ x ∈ R, h(x+ L) = h(x).

In this paper, we are concerned with the general equation:

∂u

∂t
=

∂

∂x

(
aL(x)

∂u

∂x

)
+ fL(x, u), t ∈ R, x ∈ R. (4.1.3)

The diffusion term aL satisfies
aL(x) = a(x/L),

where a is a C2,δ(R) (with δ > 0) 1-periodic function that satisfies

∃ 0 < α1 < α2, ∀ x ∈ R, α1 ≤ a(x) ≤ α2. (4.1.4)

On other hand, the reaction term satisfies fL(x, ·) = f(x/L, ·), where f := f(x, s) :

R×R+ → R is 1-periodic in x, of class C1,δ in (x, s) and C2 in s. In this setting, both
aL and fL are L-periodic in the variable x. Furthermore, we assume that:

∀ x ∈ R, f(x, 0) = 0,

∃ M ≥ 0, ∀ s ≥M, ∀ x ∈ R, f(x, s) ≤ 0,

∀ x ∈ R, s 7→ f(x, s)/s is decreasing in s > 0.

(4.1.5)
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Moreover, we set
µ(x) := lim

s→0+
f(x, s)/s,

and
µL(x) := lim

s→0+
fL(x, s)/s = µ

(x
L

)
.

The growth rate µ may be positive in some regions (favorable regions) or negative in
others (unfavorable regions).

The stationary states p(x) of (4.1.3) satisfy the equation

∂

∂x

(
aL(x)

∂p

∂x

)
+ fL(x, p) = 0, x ∈ R. (4.1.6)

Under general hypotheses including those of this paper, and in any space dimension, it
was proved in [4] that a necessary and sufficient condition for the existence of a positive
and bounded solution p of (4.1.6) was the negativity of the principal eigenvalue ρ1,L of
the linear operator

L0 : Φ 7→ −(aL(x)Φ′)′ − µL(x)Φ,

with periodicity conditions. In this case, the solution p was also proved to be unique,
and therefore L-periodic. Actually, it is easy to see that the map L 7→ ρ1,L is nonin-
creasing in L > 0, and even decreasing as soon as a is not constant (see the proof of

Lemma 4.3.1). Furthermore, ρ1,L → −
∫ 1

0

µ(x)dx as L→ 0+. In this paper, in addition

to the above-mentioned hypotheses, we make the assumption that∫ 1

0

µ(x)dx > 0. (4.1.7)

This assumption then guarantees that

∀ L > 0, ρ1,L < 0,

whence, for all L > 0, there exists a unique positive periodic and bounded solution
pL of (4.1.6). Notice that assumption (4.1.7) is immediately fulfilled if µ(x) is positive
everywhere.

In this work, we are concerned with the propagation of pulsating traveling fronts
which are particular solutions of the reaction-diffusion equation (4.1.3). Before going
further on, we recall the definition of such solutions:

Definition 4.1.2 (Pulsating traveling fronts) A function u = u(t, x) is called a
pulsating traveling front propagating from right to left with an effective speed c 6= 0, if
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u is a classical solution of:

∂u

∂t
=

∂

∂x

(
aL(x)

∂u

∂x

)
+ fL(x, u), t ∈ R, x ∈ R,

∀ k ∈ Z, ∀ (t, x) ∈ R × R, u(t+
kL

c
, x) = u(t, x+ kL),

0 ≤ u(t, x) ≤ pL(x),

lim
x→−∞

u(t, x) = 0 and lim
x→+∞

u(t, x)− pL(x) = 0,

(4.1.8)

where the above limits hold locally in t.

This definition has been introduced in [31, 32]. It has also been extended in higher
dimensions with pL ≡ 1 in [1] and [35], and with pL 6≡ 1 in [5].

Under the above assumptions, it follows from [5] that there exists c∗L > 0 such that
pulsating traveling fronts satisfying (4.1.8) with a speed of propagation c exist if and
only if c ≥ c∗L. Moreover, the pulsating fronts (with speeds c ≥ c∗L) are increasing in
time t. Further uniqueness and qualitative properties are proved in [14, 15]. The value
c∗L is called the minimal speed of propagation. We refer to [2, 3, 11, 18, 25, 27, 28, 34] for
further existence results and properties of the minimal speeds of KPP pulsating fronts.
For existence, uniqueness, stability and further qualitative results for combustion or
bistable nonlinearities in the periodic framework, we refer to [6, 7, 12, 16, 17, 19, 24,
26, 35, 36, 37, 38].

In the particular case of the Shigesada et al model (4.1.2), when a(x) ≡ 1, the
effects of the spatial distribution of the function µL on the existence and global sta-
bility of a positive stationary state pL of equation (4.1.2) have been investigated both
numerically [30, 31] and theoretically [4, 8, 29]. In particular, as already noticed, en-
larging the scale of fragmentation, i.e. increasing L, was proved to decrease the value of
ρ1,L. Biologically, this result means that larger scales have a positive effect on species
persistence, for species whose dynamics is modelled by the Shigesada et al model.

The effects of the spatial distribution of the functions aL and µL on the minimal
speed of propagation c∗L have not yet been investigated rigorously. This is a difficult
problem, since the known variational formula for c∗L bears on non-self-adjoint operators,
and therefore, the methods used to analyze the dependence of ρ1,L on fragmentation
cannot be used in this situation. However, in the case of model (4.1.2), when aL ≡ 1,
νL ≡ 1 and µL(x) = µ(x/L), for a 1-periodic function µ taking only two values,
Kinezaki et al [22] numerically observed that c∗L was an increasing function of the
parameter L. For sinusoidally varying coefficients, the relationships between c∗L and
L have also been investigated formally by Kinezaki, Kawasaki, Shigesada [21]. The
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case of a rapidly oscillating coefficient aL(x), corresponding to small L values, and the
homogenization limit L → 0, have been discussed in [19] and [38] for combustion and
bistable nonlinearities f(u).

The first aim of our work is to analyze rigorously the dependence of the speed
of propagation c∗L with respect to L, under the general setting of equation (4.1.3),
for small L values. We determine the limit of the minimal speeds c∗L as L → 0+

(the homogenization limit), and we also prove that near the homogenization limit,
the species tends to propagate faster when the spatial period of the environment is
enlarged. Next, in the case of an environment composed of patches of “habitat" and
“non-habitat", we consider the dependence of the minimal speed with respect to habitat
fragmentation. We prove that fragmentation decreases the minimal speed.

4.2 Main results

In this section, we describe the main results of this paper. Unless otherwise men-
tioned, we make the assumptions of Section 4.1. The first theorem gives the limit of
c∗L as L goes to 0.

Theorem 4.2.1 Let c∗L be the minimal speed of propagation of pulsating traveling
fronts solving (4.1.8). Then,

lim
L→0+

c∗L = 2
√
<a>H <µ>A, (4.2.1)

where

<µ>A =

∫ 1

0

µ(x)dx and <a>H =

(∫ 1

0

(a(x))−1dx

)−1

= <a−1>−1
A

denote the arithmetic mean of µ and the harmonic mean of a over the interval [0, 1].

Formula (4.2.1) was derived formally in [33] for sinusoidally varying coefficients.
Theorem 4.2.1 then provides a generalization of the formula in [33] and a rigorous
analysis of the homogenization limit for general diffusion and growth rate profiles.

Remark 4.2.2 The previous theorem gives the limit of c∗L as L → 0 when the space
dimension is 1. Theorem 3.3 of El Smaily [11] answered this issue in any dimensions N ,
but under an additional assumption of free divergence of the diffusion field (in the
one-dimensional case considered here, this assumption reduces to da/dx = 0 in R).
Lastly, we refer to [6, 7, 16] for other homogenization limits with combustion-type
nonlinearities.
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Our second result describes the behavior of the function L 7→ c∗L, for small L values.

Theorem 4.2.3 Let c∗L be the minimal speed of propagation of pulsating traveling
fronts solving (4.1.8). Then, the map L 7→ c∗L is of class C∞ in an interval (0, L0)

for some L0 > 0. Furthermore,

lim
L→0+

dc∗L
dL

= 0 (4.2.2)

and
lim
L→0+

d2c∗L
dL2

= γ ≥ 0. (4.2.3)

Lastly, γ > 0 if and only if the function

µ

<µ>A

+
<a>H

a

is not identically equal to 2.

Corollary 4.2.4 Under the notations of Theorem 4.2.3, it follows that if a is constant
and µ is not constant, or if µ is constant and a is not constant, then γ > 0 and the
speeds c∗L are increasing with respect to L when L is close to 0.

Remark 4.2.5 The question of the monotonicity of the map L 7→ c∗L had also been
studied under different assumptions in [11] (see Theorem 5.3). The author answered
this question for a reaction-advection-diffusion equation over a periodic domain Ω ⊆
RN , under an additional assumption on the diffusion coefficient (like in Remark 4.2.2,
this assumption would mean again in our present setting that the diffusion coefficient
a(x) is constant over R). Our result gives the behavior of the minimal speeds of propa-
gation near the homogenization limit for general diffusion and growth rate coefficients.
The condition γ > 0 is generically fulfilled, which means that, roughly speaking, the
more oscillating the medium is, the slower the species moves. But the speeds vary
only at the second order with respect to the period L. Based on numerical observa-
tions which have been carried out in [21] for special types of diffusion and growth rate
coefficients, we conjecture that the monotonicity of c∗L holds for all L > 0.

Lastly, we give a first theoretical evidence that habitat fragmentation, without
changing the scale L, can decrease the minimal speed c∗. We here fix a period L0 > 0.

We assume that a ≡ 1, and that µL0 := µz takes only the two values 0 and m > 0,
and depends on a parameter z. More precisely:

There exist 0 ≤ z and l ∈ (0, L0) such that l + z ≤ L0,

µz ≡ m on [0, l/2) ∪ [l/2 + z, l + z),

µz ≡ 0 on [l/2, l/2 + z) ∪ [l + z, L0).

(4.2.4)
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Figure 4.1 – The L0-periodic function x 7→ µz(x), (a): with z = 0; (b): with z > 0.

With this setting, the region where µz is positive, which can be interpreted as “habitat"
in the Shigesada et al model, is of Lebesgue measure l in each period cell [0, L0]. For
z = 0, this region is simply an interval. However, whenever z is positive, this region is
fragmented into two parts of same length l/2 (see Figure 4.1). Our next result means
that this fragmentation into two parts reduces the speed c∗.

Theorem 4.2.6 Let c∗z be the minimal speed of propagation of pulsating traveling fronts
solving (4.1.8), with aL0 ≡ 1 and µL0 = µz defined by (4.2.4). Assume that l ∈
(3L0/4, L0). Then z 7→ c∗z is decreasing in [0, (L0 − l)/2], and increasing in [(L0 −
l)/2, L0 − l].

Remark 4.2.7 Note that, whenever z > (L0 − l)/2, the two habitat components in
the period cell [l/2 + z, L0 + l/2 + z] are at a distance smaller than (L0 − l)/2 from
each other. In fact, Theorem 4.2.6 proves that, when z varies in (0, L0 − l), c∗z is all
the larger as the minimal distance separating two habitat components is small, that is
as the maximal distance between two consecutive habitat components is large.

Remark 4.2.8 Here, the function µz does not satisfy the general regularity assump-
tions of Section 4.1. However, c∗z can still be interpreted as the minimal speed of prop-
agation of weak solutions of (4.1.8), whose existence can be obtained by approaching
µz with regular functions.

The main tool of this paper is a variational formulation for c∗L involving elliptic
eigenvalue problems which depend strongly on the coefficients a and f. Such a formu-
lation was given in any space dimension in [3] in the case where the bounded stationary
state p of the equation (4.1.3) is constant, and in [5] in the case of a general nonconstant
bounded stationary state p(x).
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4.3 The homogenization limit: proof of Theorem 4.2.1

This proof is divided into three main steps.

Step 1: a rough upper bound for c∗L. For each L > 0, the minimal speed c∗L is pos-
itive and, from [5] (see also [3] in the case when p ≡ 1), it is given by the variational
formula

c∗L = min
λ>0

k(λ, L)

λ
=
k(λ∗L, L)

λ∗L
, (4.3.1)

where λ∗L > 0 and, for each λ ∈ R and L > 0, k(λ, L) denotes the principal eigenvalue
of the problem(

aLψ
′
λ,L

)′
+ 2λaLψ

′
λ,L + λa′Lψλ,L + λ2aLψλ,L + µLψλ,L = k(λ, L)ψλ,L in R, (4.3.2)

with L-periodicity conditions. In (4.3.2), ψλ,L denotes a principal eigenfunction, which
is of class C2,δ(R), positive, unique up to multiplication by a positive constant, and
L-periodic. Furthermore, it follows from Section 3 of [5] that the map λ 7→ k(λ, L)

is convex and that ∂k
∂λ

(0, L) = 0 for each L > 0. Therefore, for each L > 0, the map
λ 7→ k(λ, L) is nondecreasing in R+ and

∀ λ ≥ 0, ∀ L > 0, k(λ, L) ≥ k(0, L) = −ρ1,L > 0 (4.3.3)

under the notations of Section 4.1.

Multiplying (4.3.2) by ψλ,L and integrating by parts over [0, L], we get, due to the
L-periodicity of aL and ψλ,L :

k(λ, L)

∫ L

0

ψ2
λ,L = −

∫ L

0

aL
(
ψ′λ,L

)2
+ λ2

∫ L

0

aLψ
2
λ,L +

∫ L

0

µLψ
2
λ,L,

for all λ > 0 and for all L > 0. Consequently,

∀ λ > 0, ∀ L > 0, k(λ, L) ≤ λ2aM + µM , (4.3.4)

where
aM = max

x∈R
a(x) > 0 and µM = max

x∈R
µ(x) > 0.

Using (4.3.1), we get that

∀ L > 0, 0 < c∗L ≤ 2
√
aMµM . (4.3.5)
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Step 2: the sharp upper bound for c∗L. For any λ > 0 and L > 0, consider the
functions

ϕλ,L(x) := eλxψλ,L(x), x ∈ R.

Since ψλ,L is unique up to multiplication, we will assume in this step 2 that∫ 2

0

ϕ2
λ,L(x)dx = 1. (4.3.6)

The above choice ensures that∫ 2

0

ψ2
λ,L(x)dx ≤

∫ 2

0

e2λxψ2
λ,L(x)dx =

∫ 2

0

ϕ2
λ,L(x)dx = 1. (4.3.7)

We are now going to prove that the families (ψλ,L)λ,L and (ϕλ,L)λ,L remain bounded
in H1(0, 1) for L small enough and as soon as λ stays bounded. For each L > 0, we
call

ML = [1/L] + 1 ∈ N,

where [1/L] stands for the integer part of 1/L. Multiplying (4.3.2) by ψλ,L and inte-
grating by parts over [0,ML L], we get that

−
∫ MLL

0

aLψ
′
λ,L

2
+

∫ ML L

0

λ2aLψ
2
λ,L +

∫ ML L

0

µLψ
2
λ,L = k(λ, L)

∫ MLL

0

ψ2
λ,L.

Using (4.1.4), (4.3.3) and (4.3.4), it follows that

0 ≤
∫ MLL

0

ψ′λ,L
2 ≤ 1

α1

×
(
λ2aM + µM

)
×
∫ ML L

0

ψ2
λ,L.

Since 1 < MLL ≤ 1 + L for all L > 0, we have that 1 < MLL ≤ 2 for all L ≤ 1. Thus,
for all 0 < L ≤ 1,∫ 1

0

ψ′λ,L
2 ≤

∫ MLL

0

ψ′λ,L
2 and

∫ MLL

0

ψ2
λ,L ≤

∫ 2

0

ψ2
λ,L ≤ 1

from (4.3.7). It follows now that

∀ λ > 0, ∀ 0 < L ≤ 1,

∫ 1

0

ψ′λ,L
2 ≤ λ2aM + µM

α1

. (4.3.8)

From (4.3.7) and (4.3.8), we conclude that, for any given Λ > 0, the family (ψλ,L)0<λ≤Λ, 0<L≤1

137



Chapter 4. Homogenization and influence of fragmentation

is bounded in H1(0, 1). On the other hand,

ϕ′λ,L(x) = λϕλ,L(x) + eλxψ′λ,L(x).

Owing to (4.3.6) and (4.3.8), we get:

∀ λ > 0, ∀ L ≤ 1, ||ϕ′λ,L||L2(0,1) ≤ λ ||ϕλ,L||L2(0,1)︸ ︷︷ ︸
≤1

+eλ||ψ′λ,L||L2(0,1)

≤ λ+ eλ ×

√
λ2aM + µM

α1

.

(4.3.9)

From (4.3.6) and (4.3.9), we obtain that, for any given Λ > 0, the family (ϕλ,L)0<λ≤Λ, 0<L≤1

is bounded in H1(0, 1) and that the family (aLϕ
′
λ,L)0<λ≤Λ, 0<L≤1 is bounded in L2(0, 1)

(due to (4.1.4)). Moreover,(
aLϕ

′
λ,L

)′
= λ2aLe

λxψλ,L + 2λaLe
λxψ′L + λa′Le

λxψλ,L + eλxa′Lψ
′
λ,L + eλxaLψ

′′
λ,L.

Multiplying (4.3.2) by eλx, we then get(
aLϕ

′
λ,L

)′
+ µLϕλ,L = k(λ, L)ϕλ,L in R. (4.3.10)

Let
vλ,L(x) = aL(x)ϕ′λ,L(x)

for all λ > 0, L > 0 and x ∈ R. Pick any Λ > 0. One already knows that the family
(vλ,L)0<λ≤Λ, 0<L≤1 is bounded in L2(0, 1). Furthermore,

v′λ,L + µLϕλ,L = k(λ, L)ϕλ,L in R. (4.3.11)

Notice that the family (k(λ, L))0<λ≤Λ, 0<L≤1 is bounded from (4.3.3) and (4.3.4). From
(4.3.6) and (4.3.11), it follows that the family

(
v′λ,L

)
0<λ≤Λ, 0<L≤1

is bounded in L2(0, 1).

Eventually, (vλ,L)0<λ≤Λ, 0<L≤1 is bounded in H1(0, 1).

Pick now any sequence (Ln)n∈N such that 0 < Ln ≤ 1 for all n ∈ N, and Ln → 0+

as n → +∞. Choose any λ > 0 and any sequence (λn)n∈N of positive numbers such
that λn → λ as n→ +∞. We claim that

k(λn, Ln)→ λ2 <a>H + <µ>A as n→ +∞, (4.3.12)
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where <a>H=

(∫ 1

0

(a(x))−1dx

)
and <µ>A=

∫ 1

0

µ(x)dx. To do so, call

ψn = ψλn,Ln , ϕn = ϕλn,Ln and vn = vλn,Ln .

It follows from the above computations that the sequences (ψn) and (vn) are bounded
in H1(0, 1). Hence, up to extraction of a subsequence,

ψn → ψ and vn → w as n→ +∞,

strongly in L2(0, 1) and weakly in H1(0, 1). By Sobolev injections, the sequence (ψn) is
bounded in C0,1/2([0, 1]). But since each function ψn is Ln-periodic (with Ln → 0+), it
follows from Arzela-Ascoli theorem that ψ has to be constant over [0, 1]. Moreover, the
boundedness of the sequence (k(λn, Ln))n∈N implies that, up to extraction of another
subsequence,

k(λn, Ln)→ k(λ) ∈ R as n→ +∞.

We denote this limit by k(λ), we will see later that indeed it depends only on λ. It
follows now, from (4.3.11) after replacing (λ, L) by (λn, Ln) and passing to the limit as
n→ +∞, that

w′+ <µ>A e
λxψ = k(λ)ψeλx a.e. in (0, 1).

Notice indeed that µL ⇀<µ>A as L→ 0+ in L2(0, 1) weakly. Meanwhile,

ϕ′n = λne
λnxψn + eλnxψ′n =

vn
aLn

⇀ <a−1>A w as n→ +∞, weakly in L2(0, 1),

where <a−1>A=

∫ 1

0

(a(x))−1dx. Thus, we obtain

w =<a−1>−1
A λeλxψ =<a>H λeλxψ.

Consequently,
λ2 <a>H ψ+ <µ>A ψ = k(λ)ψ.

Actually, since the functions ψn are Ln-periodic (with Ln → 0+) and converge to the
constant ψ strongly in L2(0, 1), they converge to ψ in L2

loc(R). But

1 =

∫ 2

0

ϕ2
n ≤ e4λn

∫ 2

0

ψ2
n ≤ e4M

∫ 2

0

ψ2
n,
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where M = supn∈N λn. Hence, ψ 6= 0 and

λ2 <a>H + <µ>A= k(λ). (4.3.13)

By uniqueness of the limit, one deduces that the whole sequence (k(λn, Ln))n∈N con-
verges to this quantity k(λ) as n→ +∞, which proves the claim (4.3.12).

Now, take any sequence Ln → 0+ such that c∗Ln → lim supL→0+ c∗L as n→ +∞. For
each λ > 0 and for each n ∈ N, one has

c∗Ln ≤
k(λ, Ln)

λ

from (4.3.1), whence

lim sup
L→0+

c∗L = lim
n→+∞

c∗Ln ≤
k(λ)

λ
= λ <a>H +

<µ>A

λ
.

Since this holds for all λ > 0, one concludes that

lim sup
L→0+

c∗L ≤ 2
√
<a>H <µ>A. (4.3.14)

Step 3: the sharp lower bound for c∗L. The aim of this step is to prove that

lim inf
L→0+

c∗L ≥ 2
√
<a>H <µ>A

which would complete the proof of Theorem 4.2.1.

For each L > 0, the minimal speed c∗L is given by (4.3.1) and the map (0,+∞) 3
λ 7→ k(λ, L)/λ attains its minimum at λ∗L > 0.We will prove that, for L small enough,
the family (λ∗L) is bounded from above and from below by λ > 0 and λ > 0 respectively.
Namely, one has

Lemma 4.3.1 There exist L0 and 0 < λ ≤ λ < +∞ such that

λ ≤ λ∗L ≤ λ for all 0 < L ≤ L0.

The proof is postponed at the end of this section. Take now any sequence (Ln)n

such that 0 < Ln ≤ L0 for all n, and Ln → 0+ as n→ +∞. From Lemma 4.3.1, there
exists λ∗ > 0 such that, up to extraction of a subsequence, λ∗Ln → λ∗ as n→ +∞. One
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also has

c∗Ln =
k(λ∗Ln , Ln)

λ∗Ln
→

n→+∞

k(λ∗)

λ∗
= λ∗ <a>H +

<µ>A

λ∗
≥ 2
√
<a>H <µ>A

from (4.3.12) and (4.3.13). Therefore, lim infL→0+ c∗L ≥ 2
√
<a>H <µ>A. Eventually,

lim
L→0+

c∗L = 2
√
<a>H <µ>A

and the proof of Theorem 4.2.1 is complete. �

Proof of Lemma 4.3.1. Observe first that, for λ = 0 and for any L > 0, k(0, L) is
the principal eigenvalue of the problem

(aLφ
′
L)′ + µLφL = k(0, L)φL in R,

and we denote φL = ψ0,L a principal eigenfunction, which is L-periodic, positive and
unique up to multiplication. In other words, k(0, L) = −ρ1,L under the notations of
Section 4.1. Dividing the above elliptic equation by φL and integrating by parts over
[0, L], one gets

k(0, L) =
1

L

∫ L

0

aL φ
′
L

2

φ2
L

+

∫ 1

0

µ(x)dx ≥ <µ>A > 0.

On the other hand, as already recalled, ∂k
∂λ

(0, L) = 0 and the map λ 7→ k(λ, L) is convex
for all L > 0. Therefore,

∀ λ > 0, ∀ L > 0, k(λ, L) ≥ k(0, L) ≥ <µ>A > 0.

Assume here that there exists a sequence (Ln)n∈N of positive numbers such that
Ln → 0+ and λ∗Ln → 0+ as n→ +∞. One then gets

c∗Ln =
k(λ∗Ln , Ln)

λ∗Ln
≥ <µ>A

λ∗Ln
→ +∞ as n→ +∞.

This is contradiction with (4.3.14). Thus, for L > 0 small enough, the family (λ∗L)L

is bounded from below by a positive constant λ > 0 (actually, these arguments show
that the whole family (λ∗L)L>0 is bounded from below by a positive constant).

It remains now to prove that (λ∗L)L is bounded from above when L is small enough.
We assume, to the contrary, that there exists a sequence Ln → 0+ as n → +∞ such
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that λ∗Ln → +∞ as n→ +∞. Call

kn = k(λ∗Ln , Ln), ψn(x) = ψλ∗Ln ,Ln(x) and ϕn(x) = ϕλ∗Ln ,Ln(x) = eλ
∗
Ln
xψn(x)

for all n ∈ N and x ∈ R. Rewriting (4.3.10) for λ = λ∗Ln and for L = Ln, one
consequently gets

∀ n ∈ N, (aLnϕ
′
n)
′
+ µLnϕn = knϕn in R. (4.3.15)

Owing to the positivity and the Ln-periodicity of the C2(R) eigenfunction ψn, it follows
that

∀ n ∈ N, ∃ θn ∈ [0, Ln], ψn(θn) = max
x∈R

ψn(x) = max
x∈[0,Ln]

ψn(x),

whence
∀n ∈ N, ψ′n(θn) = 0.

For each n ∈ N, let MLn = [1/Ln] + 1 ∈ N. Thus,

∀ n ∈ N, ϕ′n(θn +MLnLn) = λ∗Lne
λ∗Ln (θn+MLnLn)ψn(θn).

Multiplying (4.3.15) by ϕn and integrating by parts over the interval [θn, θn +MLn Ln],

one then obtains

aLn(θn +MLn Ln)ϕ′n(θn +MLn Ln)ϕn(θn +MLn Ln)− aLn(θn)ϕ′n(θn)ϕn(θn)︸ ︷︷ ︸
A(n)

−
∫ θn+MLn Ln

θn

aLnϕ
′
n

2

︸ ︷︷ ︸
B(n)

+

∫ θn+MLn Ln

θn

µLnϕ
2
n︸ ︷︷ ︸

C(n)

= kn

∫ θn+MLn Ln

θn

ϕ2
n.

(4.3.16)
But, for each n ∈ N, MLn ∈ N while aLn and ψn are Ln-periodic. Hence, aLn(θn +

MLn Ln) = aLn(θn), ψn(θn + MLn Ln) = ψn(θn), and ψ′n(θn + MLn Ln) = ψ′n(θn) = 0.

Then,

A(n) = aLn(θn)λ∗Lnψ
2
n(θn)

(
e2λ∗Ln (θn+MLn Ln) − e2λ∗Lnθn

)
≥ α1

2
× λ∗Lnψ

2
n(θn)e2λ∗Ln (θn+MLn Ln) (α1 > 0 is given by (4.1.4)),

(4.3.17)

whenever n is large enough so that 2 ≤ e2λ∗LnMLnLn (remember that λ∗Ln → +∞ as
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n→ +∞, by assumption). Meanwhile, for all n ∈ N,

|C(n)| ≤
∫ θn+MLn Ln

θn

∣∣∣∣µ(
x

Ln
)

∣∣∣∣ e2λ∗Lnxψ2
n(x)dx ≤ µ∞ ×

ψ2
n(θn)

2λ∗Ln
× e2λ∗Ln (θn+MLnLn),

(4.3.18)
where µ∞ = maxx∈R |µ(x)|. On the other hand, (4.3.1) and (4.3.5) yield

kn ≤ 2
√
aMµM × λ∗Ln

for all n ∈ N, whence

kn

∫ θn+MLn Ln

θn

ϕ2
n = kn

∫ θn+MLn Ln

θn

e2λ∗Lnxψ2
n(x)dx

≤ √
aMµM × ψ2

n(θn)× e2λ∗Ln (θn+MLnLn).

(4.3.19)

Now, the term B(n) can be estimated as follows

B(n) =

MLn−1∑
j=0

∫ θn+(j+1)Ln

θn+jLn

aLne
2λ∗Lnx

(
ψ′n(x) + λ∗Lnψn(x)

)2
dx

≤
MLn−1∑
j=0

α2 e
2λ∗Ln (θn+(j+1)Ln)

∫ θn+(j+1)Ln

θn+jLn

(
ψ′n(x) + λ∗Lnψn(x)

)2
dx [from (4.1.4)]

=

MLn−1∑
j=0

α2 e
2λ∗Ln (θn+(j+1)Ln)

∫ Ln

0

(
ψ′n(x) + λ∗Lnψn(x)

)2
dx

since ψn is Ln-periodic. One has∫ Ln

0

(
ψ′n(x) + λ∗Lnψn(x)

)2
dx ≤ ψ2

n(θn)

∫ Ln

0

(
ψ′n(x)

ψn(x)
+ λ∗Ln

)2

dx.

We refer now to equation (4.3.2). Taking λ = λ∗Ln , dividing this equation (4.3.2) by
the Ln-periodic function ψn and then integrating by parts over the interval [0, Ln], we
get ∫ Ln

0

aLn

(
ψ′n
ψn

)2

+ 2λ∗Ln

∫ Ln

0

aLn
ψ′n
ψn

+ λ∗Ln
2

∫ Ln

0

aLn +

∫ Ln

0

µLn = knLn
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for all n ∈ N. Thus,∫ Ln

0

aLn

(
ψ′n
ψn

+ λ∗Ln

)2

+

∫ Ln

0

µLn︸ ︷︷ ︸
>0

= knLn ≤ 2
√
aMµM × λ∗Ln Ln.

Owing to (4.1.4), it follows that

∀ n ∈ N,
∫ Ln

0

(
ψ′n
ψn

+ λ∗Ln

)2

≤
2
√
aMµM

α1

× λ∗Ln Ln.

Putting the above result into B(n), we obtain, for all n ∈ N,

B(n) ≤
2α2
√
aMµM

α1

× λ∗Ln Lnψ
2
n(θn)

MLn−1∑
j=0

e2λ∗Ln (θn+(j+1)Ln)

=
2α2
√
aMµM

α1

× λ∗Ln Lnψ
2
n(θn)e2λ∗Ln (θn+Ln) × e2λ∗Ln LnMLn − 1

e2λ∗LnLn − 1

≤
2α2
√
aMµM

α1

× ψ2
n(θn)×

λ∗Ln Lne
2λ∗LnLn

e2λ∗LnLn − 1
× e2λ∗Ln (θn+MLn Ln)

≤ β × ψ2
n(θn)e2λ∗Ln (θn+MLn Ln) ×

(
λ∗LnLn + 1

)
,

(4.3.20)

where β =
(
2α2
√
aMµM/α1

)
× C and C is a positive constant such that

∀x ≥ 0,
xe2x

e2x − 1
≤ C × (x+ 1).

Lastly, let us rewrite equation (4.3.16) as

∀ n ∈ N, A(n) + C(n)− kn
∫ θn+MLnLn

θn

ϕ2
n = B(n).

Together with (4.3.17), (4.3.18), (4.3.19) and (4.3.20), one concludes that there exists
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n0 ∈ N such that for n ≥ n0,

α1

2
× λ∗Lnψ

2
n(θn)e2λ∗Ln (θn+MLn Ln) − µ∞ ×

ψ2
n(θn)

2λ∗Ln
× e2λ∗Ln (θn+MLnLn)

− √aMµM × ψ2
n(θn)e2λ∗Ln (θn+MLn Ln)

≤ β × ψ2
n(θn)e2λ∗Ln (θn+MLn Ln) ×

(
λ∗LnLn + 1

)
.

(4.3.21)

Divide (4.3.21) by λ∗Lnψ
2
n(θn)e2λ∗Ln (θn+MLn Ln). Then

∀ n ≥ n0,
α1

2
− µ∞

2(λ∗Ln)2
−
√
aMµM

λ∗Ln
≤ β ×

(
Ln +

1

λ∗Ln

)
.

Passing to the limit as n → +∞, one has Ln → 0+ and λ∗Ln → +∞, whence α1 ≤ 0,
which is impossible.

Therefore the assumption that λ∗Ln → +∞ as Ln → 0+ is false and consequently
the family (λ∗L)L is bounded from above by some positive λ > 0 whenever L is small
(i.e. 0 < L ≤ L0). This completes the proof of Lemma 4.3.1. �

Remark 4.3.2 From Theorem 4.2.1, one concludes that the map (0,+∞) 3 L 7→ c∗L
can be extended by continuity to the right at L = 0+. Furthermore, for any sequence
(Ln)n of positive numbers such that Ln → 0+ as n→ +∞, one claims that the positive

numbers λ∗Ln given in (4.3.1) converge to
√
<a>−1

H <µ>A =
√
<a−1>A<µ>A as

n→ +∞. Indeed

∀ n ∈ N, c∗Ln =
k(λ∗Ln , Ln)

λ∗Ln

and Lemma 4.3.1 implies that, up to extraction of a subsequence, λ∗Ln → λ∗ > 0.

Passing to the limit as n→ +∞ in the above equation and due (4.3.13) together with
Step 2 of the proof of Theorem 4.2.1, one gets

2
√
<a>H<µ>A =

k(λ∗)

λ∗
= λ∗ <a>H +

<µ>A

λ∗
,

whence λ∗ =
√
<a>−1

H <µ>A. Since the limit does not depend on any subsequence,
one concludes that the limit of λ∗L, as L→ 0+, exits and

lim
L→0+

λ∗L =
√
<a>−1

H <µ>A =
√
<a−1>A<µ>A.
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The sharp lower bound of lim infL→0+ c∗L from the homogenized equation. In
the following, we are going to derive the homogenized equation of (4.1.3), which will
lead to the sharp lower bound of lim infL→0+ c∗L. However, to furnish this goal we will
only consider for the sake of simplicity a particular type of nonlinearities among those
satisfying (4.1.5). In fact, the following ideas can be generalized to a wider family of
nonlinearities which satisfy (4.1.5), but the proof requires technical extra-arguments
which will be the purpose of a forthcoming paper.

For each L > 0, let uL be a pulsating travelling front with minimal speed c∗L for the
reaction-diffusion equation

∂uL
∂t

=
∂

∂x

(
aL(x)

∂ uL
∂x

)
+ µ(

x

L
)g(uL), t ∈ R, x ∈ R,

∀(t, x) ∈ R× R, 0 < uL(t+
L

c∗L
, x) = uL(t, x+ L) < 1,

lim
x→−∞

uL(t, x) = 0 and lim
x→+∞

uL(t, x) = 1,

(4.3.22)

where aL(x) = a(x/L), a is a C2,δ(R) 1-periodic function satisfying (4.1.4), µ is a
C1,δ(R) positive 1-periodic function and g is a C2(R+) function such that g(0) =

g(1) = 0 and u 7→ g(u)/u is decreasing in (0,+∞). Up to a shift in time, one can
assume that

∀L > 0,

∫∫
(0,1)×(0,1)

uL(t, x) dt dx =
1

2
. (4.3.23)

For each L > 0, set fL(x, u) := f(x/L, u) = µ(x/L)g(u). In this setting, there holds
pL ≡ 1. From standard parabolic estimates, each function uL is (at least) of class
C2(R× R). Denote

vL(t, x) = aL(x)
∂uL
∂x

(t, x) and wL(t, x) =
∂uL
∂t

(t, x) in R× R.

As already underlined, it follows from [1] that wL = ∂uL
∂t

> 0 in R× R for each L > 0.
Under the notations of the beginning of this section, it follows from (4.1.4) and (4.3.2)
that k(λ, L) ≥ λ2α1 + µm for all L > 0 and λ ∈ R, where µm = minR µ > 0. Hence,
c∗L ≥ 2

√
α1µm for each L > 0 and lim infL→0+ c∗L ≥ 2

√
α1µm > 0.

We shall now establish some estimates for the functions uL, vL and wL which are
independent of L, in order to pass to the limit as L → 0+. Notice first that standard
parabolic estimates and the (t, x)-periodicity satisfied by the functions uL imply that,
for each L > 0, uL(−∞, x) = 0 and uL(+∞, x) = 1 in C2

loc(R), and wL(±∞, x) = 0 in
C1
loc(R).
Let k ∈ N\{0} be given. Integrating the first equation of (4.3.22) by parts over
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R× (−kL, kL), one obtains

∀L > 0,

∫∫
R×(−kL,kL)

f(
x

L
, uL) dt dx = 2kL. (4.3.24)

Multiplying the first equation of (4.3.22) by uL and integrating by parts over R ×
(−kL, kL), one then gets

∀L > 0, kL = −
∫∫

R×(−kL,kL)

aL(x)

(
∂uL
∂x

)2

dt dx+

∫∫
R×(−kL,kL)

f(
x

L
, uL)uL dt dx.

(4.3.25)
Notice that the last integral in (4.3.25) converges because of (4.3.24) and 0 ≤ f(x/L, uL)uL ≤
f(x/L, uL). Together with (4.1.4), one concludes that for each L > 0, the first integral
in (4.3.25) converges and

∀L > 0,

∫∫
R×(−kL,kL)

(
∂uL
∂x

)2

dt dx ≤ kL

α1

.

Multiply the first equation of (4.3.22) by ∂uL
∂t

and integrate by parts over R×(−kL, kL).

Since∫∫
R×(−kL,kL)

∂

∂x

(
aL(x)

∂uL
∂x

)
∂uL
∂t

= −1

2

∫
R×(−kL,kL)

∂

∂t

(
aL(x)

(
∂uL
∂x

)2
)

= 0,

one obtains that

∀L > 0,

∫∫
R×(−kL,kL)

(
∂uL
∂t

)2

dt dx =

∫
(−kL,kL)

F (
x

L
, 1)dx = 2kL×

∫ 1

0

µ×
∫ 1

0

g,

(4.3.26)
where F (y, s) =

∫ s
0
f(y, τ)dτ . It follows from the above estimates that for each compact

subset K of R,

∀ 0 < L < 1,

∫∫
R×K

[(
∂uL
∂t

)2

+

(
∂uL
∂x

)2
]
dt dx ≤ C(K), (4.3.27)

where C(K) is a positive constant depending only on K.

In particular, for each compact K of R and for each L > 0, ||wL||L2(R×K) ≤
√
C(K).

Now, differentiate the first equation of (4.3.22) with respect to t (actually, from the
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regularity of f , the function wL is of class C2 with respect to x). There holds

∂wL
∂t

=
∂

∂x

(
aL(x)

∂ wL
∂x

)
+ µ(

x

L
)g′(uL)wL in R× R.

Multiply the above equation by wL and integrate by parts over R× (−kL, kL). From
(4.1.4) and (4.3.26), it follows that∫∫

R×(−kL,kL)

(
∂wL
∂x

)2

dtdx ≤ 2kLη

α1

where η is the positive constant defined by

η = max
x∈R

µ(x) max
u∈[0,1]

|g′(u)| max
x∈R
|F (x, 1)| ≥ 1

2kL

∫∫
R×(−kL,kL)

µ(
x

L
)g′(uL)w2

L dt dx > 0.

Then, for each compact K ⊂ R, there exists a constant C ′(K) > 0 depending only on
K such that

∀ 0 < L < 1,

∫∫
R×K

(
∂wL
∂x

)2

dt dx ≤ C ′(K). (4.3.28)

Let (Ln)n∈N be a sequence of real numbers in (0, 1) such that Ln → 0 and c∗Ln →
lim infL→0+ c∗L > 0 as n → +∞. It follows from (4.3.27) and the bounds 0 < uLn < 1

that there exists u0 in H1
loc(R × R) such that, up to extraction of a subsequence,

uLn → u0 strongly in L2
loc(R× R) and almost everywhere in R× R, and(

∂uLn
∂t

,
∂uLn
∂x

)
⇀

(
∂u0

∂t
,
∂u0

∂x

)
weakly in L2

loc(R× R) as n→ +∞.

Remember that vLn = aLn
∂uLn
∂x

and 0 < α1 ≤ aLn ≤ α2 for each n ∈ N. Thus, (4.3.27)
yields that for each compact K of R and for each n ∈ N, ||vLn||L2(R×K) ≤ α2C(K).

Furthermore, (4.3.22) implies that

∀n ∈ N, ∂vLn
∂x

=
∂uLn
∂t
− f(

x

Ln
, uLn) in R× R,

while 0 ≤ f(x/Ln, uLn(t, x)) ≤ κ in R × R where κ = maxR µ × max[0,1] g > 0 is
independent of n. Together with (4.3.27), one concludes that the sequence (

∂vLn
∂x

)n∈N

is bounded in L2
loc(R × R). On the other hand, ∂vLn

∂t
= aLn

∂2uLn
∂t∂x

= aLn
∂wL
∂x

. Owing to
(4.1.4) and (4.3.28), the sequence (

∂vLn
∂t

)n∈N is bounded in L2
loc(R×R). Consequently, up

to extraction of another subsequence, there exists v0 ∈ H1
loc(R×R) such that vLn → v0
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strongly in L2
loc(R× R) and(

∂vLn
∂t

,
∂vLn
∂x

)
⇀

(
∂v0

∂t
,
∂v0

∂x

)
weakly in L2

loc(R× R) as n→ +∞.

However, a−1
Ln
⇀< a−1 >A=< a >−1

H in L∞(R) weak-∗ as n→ +∞. Thus,

∂uLn
∂x

=
vLn
aLn

⇀
v0

< a >H

weakly in L2
loc(R× R) as n→ +∞.

By uniqueness of the limit, one gets v0 =< a >H
∂u0

∂x
. Passing to the limit as n→ +∞

in the first equation of (4.3.22) with L = Ln implies that u0 is a weak solution of the
equation

∂u0

∂t
=
∂v0

∂x
+ < µ >A g(u0) =< a >H

∂2u0

∂x2
+ < µ >A g(u0) in D′(R× R).

From parabolic regularity, the function u0 is then a classical solution of the homogenous
equation

∂u0

∂t
=< a >H

∂2u0

∂x2
+ < µ >A g(u0) in R× R,

such that 0 ≤ u0 ≤ 1 and ∂u0

∂t
≥ 0 in R × R. Lastly,

∫∫
(0,1)2 u0(t, x) dt dx = 1

2
from

(4.3.23). On the other hand, it follows from the second equation of (4.3.22) and (4.3.27)
that

∀γ ∈ R, u0(t+
γ

c
, x) = u0(t, x+ γ) in R× R,

where c = lim infL→0+ c∗L = limn→+∞ c
∗
Ln

> 0. In other words, u0(t, x) = U0(x + ct),
where U0 is a classical solution of the equation

cU ′0 =< a >H U ′′0 + < µ >A g(U0), 0 ≤ U0 ≤ 1 in R (4.3.29)

that satisfies U ′0 ≥ 0 in R and ∫ 1

0

(∫ cs+1

cs

U0

)
ds =

1

2
.

Standard elliptic estimates imply that U0 converges as s→ ±∞ in C2
loc(R) to two con-

stants U±0 ∈ [0, 1] such that < µ >A g(U±0 ) = 0, that is g(U±0 ) = 0. The monotonicity
of U0 and the assumption on g imply that U−0 = 0 and U+

0 = 1. In other words, U0 is a
usual travelling front for the homogenized equation (4.3.29) with speed c and limiting
conditions 0 and 1 at infinity. Since the minimal speed for this problem is equal to
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2
√
< a >H< µ >A, one concludes that

lim inf
L→0+

c∗L = c ≥ 2
√
< a >H< µ >A.

4.4 Monotonicity of the minimal speeds c∗L near the
homogenization limit

This section is devoted to the proof of Theorem 4.2.3. Before going further in the
proof, we recall that for each L > 0, the minimal speed c∗L is given by the variational
formula

c∗L = min
λ>0

k(λ, L)

λ
=
k(λ∗L, L)

λ∗L
,

where λ∗L > 0 and k(λ, L) is the principal eigenvalue of the elliptic equation (4.3.2).
Notice that k(λ, L) can be defined for all λ ∈ R and L > 0.

Step 1: properties of k(λ, L) and definition of k̃(λ, L). The principal eigenfunction
ψλ,L of (4.3.2) is L-periodic, positive and unique up to multiplication. Denote

φλ,L(x) = ψλ,L(Lx)

for all L > 0, λ ∈ R and x ∈ R. Each function φλ,L is 1-periodic, positive and it is the
principal eigenfunction of

(aφ′λ,L)′ + 2Lλaφ′λ,L + Lλa′φλ,L + L2λ2aφλ,L + L2µφλ,L = L2k(λ, L)φλ,L,

associated to the principal eigenvalue L2k(λ, L). But the above problem can be defined
for all λ ∈ R and L ∈ R. That is, for each (λ, L) ∈ R2, there exists a unique principal
eigenvalue k̃(λ, L) and a unique (up to multiplication) principal eigenfunction φ̃(λ, L)

of

(aφ̃′λ,L)′ + 2Lλaφ̃′λ,L + Lλa′φ̃λ,L + L2λ2aφ̃λ,L + L2µφ̃λ,L = k̃(λ, L)φ̃λ,L. (4.4.1)

Furthermore, φ̃λ,L is 1-periodic, positive and it can be normalized so that∫ 1

0

φ̃2
λ,L(x)dx = 1 (4.4.2)
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for all (λ, L) ∈ R2. By uniqueness of the principal eigenelements, it follows that

∀ L > 0, ∀ λ ∈ R, k̃(λ, L) = L2k(λ, L)

and φ̃λ,L and φλ,L are equal up to multiplication by positive constants for each L > 0

and λ ∈ R.

Some useful properties of k(λ, L) as L → 0+ shall now be derived from the study
the function k̃. Notice first that, since the coefficients of the left-hand side of (4.4.1)
are analytic in (λ, L), the function k̃ is analytic, and from the normalization (4.4.2),
the functions φ̃λ,L also depend analytically in H2

loc(R) on the parameters λ and L (see
[10, 20]). In particular, the function k is analytic in R× (0,+∞). Observe also that

k̃(λ, 0) = 0 and φ̃λ,0 = 1 for all λ ∈ R.

Lastly, when λ is changed into −λ or when L is changed into −L, then the operator in
(4.4.1) is changed into its adjoint. But since the principal eigenvalues of the operator
and its adjoint are identical, it follows that

∀ (λ, L) ∈ R2, k̃(λ, L) = k̃(λ,−L) = k̃(−λ, L).

In particular, it follows that

∀ (i, j) ∈ N2,
∂ik̃

∂λi
(λ, 0) =

∂i∂2j+1k̃

∂λi∂L2j+1
(λ, 0) = 0. (4.4.3)

Therefore, for all λ ∈ R,

k(λ, L) =
k̃(λ, L)

L2
→ 1

2
× ∂2k̃

∂L2
(λ, 0) as (λ, L)→ (λ, 0+).

But since this limit is equal to k(λ) = λ
2
<a>H + <µ>A from Step 2 of the proof of

Theorem 4.2.1, one then gets that

1

2
× ∂2k̃

∂L2
(λ, 0) = λ

2
<a>H + <µ>A for all λ ∈ R. (4.4.4)

It also follows from (4.4.3) that

∂2k

∂λ2
(λ, L) =

1

L2
× ∂2k̃

∂λ2
(λ, L)→ 1

2
× ∂4k̃

∂λ2∂L2
(λ, 0) as (λ, L)→ (λ, 0+). (4.4.5)
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From (4.4.4) and (4.4.5), one deduces that

∂2k

∂λ2
(λ, L)→ 2 <a>H > 0 as (λ, L)→ (λ, 0+). (4.4.6)

Similarly, as (λ, L)→ (λ, 0+),

∂k

∂L
(λ, L) =

∂

∂L

(
k̃(λ, L)

L2

)
→ 1

6
× ∂3k̃

∂L3
(λ, 0) = 0

∂2k

∂λ∂L
(λ, L) =

∂

∂L

(
1

L2
× ∂k̃

∂λ
(λ, L)

)
→ 1

6
× ∂4k̃

∂λ∂L3
(λ, 0) = 0

∂2k

∂L2
(λ, L) =

∂2

∂L2

(
k̃(λ, L)

L2

)
→ 1

12
× ∂4k̃

∂L4
(λ, 0)

(4.4.7)

Remark 4.4.1 As a byproduct of the fact that k̃ and k are even in λ, it follows that the
minimal speed of pulsating fronts propagating from right to left (as in Definition 4.1.2)
is the same as that of fronts propagating from left to right.

Step 2: properties of c∗L and λ∗L in the neighbourhood of L = 0+. Let us first prove that,
for each fixed L > 0, the positive real number λ∗L > 0 given in (4.3.1) is unique. Indeed,
if there are 0 < λ1 < λ2 such that

c∗L =
k(λ1, L)

λ1

=
k(λ2, L)

λ2

= min
λ>0

k(λ, L)

λ
,

then k(λ, L) = c∗Lλ for all λ ∈ [λ1, λ2] since k is convex with respect to λ. Then
k(λ, L) = c∗Lλ for all λ ∈ R by analyticity of the map R 3 λ 7→ k(λ, L). But k(0, L) =

−ρ1,L > 0, which gives a contradiction. Therefore, for each L > 0, λ∗L is the unique
minimum of the map (0,+∞) 3 λ 7→ k(λ, L)/λ.

Furthermore, we claim that L 7→ λ∗L and L 7→ c∗L are of class C∞ in a right
neighbourhood of L = 0. Indeed, by definition, λ∗L satisfies

F (λ∗L, L) :=
∂k

∂λ
(λ∗L, L)× λ∗L − k(λ∗L, L) = 0. (4.4.8)

The function (λ, L) 7→ F (λ, L) is of class C∞ on R×(0,+∞) and ∂F
∂λ

(λ, L) = ∂2k
∂λ2 (λ, L)×

λ. But
λ∗L → λ∗ =

√
<a>−1

H <µ>A > 0 as L→ 0+
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from Remark 4.3.2, and

∂2k

∂λ2
(λ∗L, L) → 2 <a>H > 0 as L→ 0+

from (4.4.6). Therefore, from the implicit function theorem, the map L 7→ λ∗L is of
class C∞ in an interval (0, L0) for some L0 > 0. As a consequence of formula (4.3.1),
the map L 7→ c∗L is also of class C∞ on (0, L0).

For each L ∈ (0, L0), one has

dc∗L
dL

=

(
1

λ∗L
× ∂k

∂λ
(λ∗L, L)− k(λ∗L, L)

(λ∗L)2

)
× dλ∗L

dL
+

1

λ∗L
× ∂k

∂L
(λ∗L, L) =

1

λ∗L
× ∂k

∂L
(λ∗L, L)

by definition of λ∗L and formula (4.3.1). But λ∗L → λ∗ > 0 and ∂k
∂L

(λ∗L, L) → 0 as
L→ 0+ from (4.4.7). Thus,

dc∗L
dL
→ 0 as L→ 0+.

On the other hand, it follows from (4.4.6), (4.4.7) and (4.4.8) that

dλ∗L
dL

=
1

λ∗L ×
∂2k

∂λ2
(λ∗L, L)

×
(
∂k

∂L
(λ∗L, L)− λ∗L ×

∂2k

∂λ∂L
(λ∗L, L)

)
→ 0 as L→ 0+.

Therefore,

d2c∗L
dL2

=
dλ∗L
dL
×
(
− 1

(λ∗L)2
× ∂k

∂L
(λ∗L, L) +

1

λ∗L
× ∂2k

∂λ∂L
(λ∗L, L)

)
+

1

λ∗L
× ∂2k

∂L2
(λ∗L, L)

→ 1

12λ∗
× ∂4k̃

∂L4
(λ∗, 0) as L→ 0+,

(4.4.9)
from (4.4.7).

Step 3: calculation of ∂4k̃
∂L4 (λ∗, 0). In this step, we fix λ∗ =

√
<a>−1

H <µ>A. Since

the functions φ̃λ∗,L depend analytically on L ∈ R in H2
loc(R), the expansion

φ̃λ∗,L = 1 + Lφ1 + L2φ2 + L3φ3 + L4φ4 + . . .

is valid in H2
loc(R) in a neighbourhood of L = 0, where 1 = φ̃λ∗,0 and

φi =
1

i !
× ∂iφ̃λ∗,L

∂Li

∣∣∣∣∣
L=0
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for each i ≥ 1. We now put this expansion into

(aφ̃′λ∗,L)′ + 2Lλ∗aφ̃′λ∗,L + Lλ∗a′φ̃λ∗,L + L2(λ∗)2aφ̃λ∗,L + L2µφ̃λ∗,L = k̃(λ∗, L)φ̃λ∗,L

and remember that

k̃(λ∗, 0) =
∂k̃

∂L
(λ∗, 0) =

∂3k̃

∂L3
(λ∗, 0) = 0

and
∂2k̃

∂L2
(λ∗, 0) = 2×

[
(λ∗)2 <a>H + <µ>A

]
= 4 <µ>A

from (4.4.3) and (4.4.4). Since both φ̃λ∗,L and k̃(λ∗, L) depend analytically on L, it
follows in particular that

(aφ′1)′ + λ∗a′ = 0,

(aφ′2)′ + 2λ∗aφ′1 + λ∗a′φ1 + (λ∗)2a+ µ = 2 <µ>A,

(aφ′3)′ + 2λ∗aφ′2 + λ∗a′φ2 + (λ∗)2aφ1 + µφ1 = 2 <µ>A φ1,

(aφ′4)′ + 2λ∗aφ′3 + λ∗a′φ3 + (λ∗)2aφ2 + µφ2 = 2 <µ>A φ2 +
1

24
× ∂4k̃

∂L4
(λ∗, 0)

(4.4.10)
in R. Furthermore, each function φi is 1-periodic and, by differentiating the normal-
ization condition ‖φ̃λ∗,L‖2

L2(0,1) = 1 with respect to L at L = 0, it follows especially
that ∫ 1

0

φ1 = 0 and
∫ 1

0

φ2 = −1

2

∫ 1

0

φ2
1.

It is then found that, for all x ∈ R,

aφ′1(x) = −λ∗a(x) + λ∗ <a>H , (4.4.11)

φ1(x) = λ∗ ×
(
−x+ <a>H

∫ x

0

1

a(y)
dy − 1

2
+ <a>H

∫ 1

0

y

a(y)
dy

)
(4.4.12)

and

φ′2(x) = <µ>A ×
[
x

a(x)
−
∫ 1

0

y

a(y)
dy −

∫ x

0

1

a(y)
dy − <a>H

a(x)

∫ 1

0

y

a(y)
dy

]
+

1

a(x)
×
[
<a>H

∫ 1

0

(
1

a(y)

∫ y

0

µ(z)dz

)
dy −

∫ x

0

µ(y)dy

]
+ (λ∗)2

(
x+

1

2

)
.
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Moreover, it follows from the third equation of (4.4.10) that, for all x ∈ R,

a(x)φ′3(x) = −2λ∗
∫ x

0

a(y)φ′2(y)dy − λ∗
∫ x

0

a′(y)φ2(y)dy − (λ∗)2

∫ x

0

a(y)φ1(y)dy

−
∫ x

0

µ(y)φ1(y)dy + 2 <µ>A

∫ x

0

φ1(y)dy+ <a>H c,

(4.4.13)
where

c =

∫ 1

0

[
1

a(y)
×
(

2λ∗
∫ y

0

a(z)φ′2(z)dz + λ∗
∫ y

0

a′(z)φ2(z)dz + (λ∗)2

∫ y

0

a(z)φ1(z)dz

+

∫ y

0

µ(z)φ1(z)dz − 2 <µ>A

∫ y

0

φ1(z)dz

)]
dy.

(4.4.14)
On the other hand, by integrating the fourth equation of (4.4.10) over the interval

[0, 1], one gets that

1

24
× ∂4k̃

∂L4
(λ∗, 0) = −2 <µ>A

∫ 1

0

φ2 + λ∗
∫ 1

0

aφ′3 + (λ∗)2

∫ 1

0

aφ2 +

∫ 1

0

µφ2. (4.4.15)

One multiplies the second equation of (4.4.10) by φ2 and integrates by parts over [0, 1]

to get

2 <µ>A

∫ 1

0

φ2 = −
∫ 1

0

aφ′2
2

+ 2λ∗
∫ 1

0

aφ′1φ2 + λ∗
∫ 1

0

a′φ1φ2 + λ∗2
∫ 1

0

aφ2 +

∫ 1

0

µφ2.

Now, putting the above equation into (4.4.15) and integrating by parts, it follows
that

1

24
× ∂4k̃

∂L4
(λ∗, 0) = λ∗

∫ 1

0

aφ′3 +

∫ 1

0

aφ′2
2 − λ∗

∫ 1

0

aφ′1φ2 + λ∗
∫ 1

0

aφ1φ
′
2. (4.4.16)

To develop
∫ 1

0
aφ′3, we use the fact that, for any continuous function G,∫ 1

0

∫ x

0

G(y)dydx =

∫ 1

0

(1− x)G(x)dx.
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Hence, it follows from (4.4.13) that∫ 1

0

aφ′3 = −λ∗
∫ 1

0

aφ′2 + λ∗
∫ 1

0

xa(x)φ′2(x)dx+ λ∗a(0)φ2(0)− λ∗
∫ 1

0

aφ2

−λ∗2
∫ 1

0

aφ1 + λ∗2
∫ 1

0

xaφ1 −
∫ 1

0

µφ1 +

∫ 1

0

xµφ1

−2 <µ>A

∫ 1

0

xφ1 + c <a>H .

(4.4.17)

In what follows, we denote

B(x) =

∫ x

0

1

a(y)
dy and D(x) =

∫ x

0

µ(y)dy.

Since for any continuous function h∫ 1

0

1

a(y)

∫ y

0

h(z)dzdy =
1

<a>H

∫ 1

0

h(z)dz −
∫ 1

0

h(z)B(z)dz,

we get that ∫ 1

0

1

a(y)

(∫ y

0

a(z)φ′2(z)dz

)
dy =

1

<a>H

∫ 1

0

aφ′2 −
∫ 1

0

aBφ′2.

One obtains from (4.4.14) that

λ∗c <a>H= λ∗2
∫ 1

0

aφ′2 − λ∗
2 <a>H

∫ 1

0

aBφ′2 + λ∗2 <a>H

∫ 1

0

φ2

−λ∗2a(0)φ2(0) + λ∗3
∫ 1

0

aφ1 − λ∗3 <a>H

∫ 1

0

aBφ1 + λ∗
∫ 1

0

µφ1

−λ∗ <a>H

∫ 1

0

µBφ1 + 2λ∗ < µ >A<a>H

∫ 1

0

Bφ1.

(4.4.18)
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Putting (4.4.17) and (4.4.18) into (4.4.16), it follows that

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

aφ′2
2 − λ∗

∫ 1

0

aφ′1φ2 + λ∗
∫ 1

0

aφ1φ
′
2 + λ∗2

∫ 1

0

xaφ′2

−λ∗2
∫ 1

0

aφ2 + λ∗3
∫ 1

0

xaφ1 + λ∗
∫ 1

0

xµφ1

−2λ∗ < µ >A

∫ 1

0

xφ1 − λ∗2 <a>H

∫ 1

0

Baφ′2

+λ∗2 <a>H

∫ 1

0

φ2 − λ∗3 <a>H

∫ 1

0

Baφ1

−λ∗ <a>H

∫ 1

0

Bµφ1 + 2λ∗ < µ >A<a>H

∫ 1

0

Bφ1.

Referring to (4.4.11) and (4.4.12) one obtains

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

aφ′2
2

+ λ∗3
∫ 1

0

xaφ1 − λ∗3 <a>H

∫ 1

0

Baφ1 −
λ∗2

2

∫ 1

0

aφ′2

+λ∗2 <a>H<
x

a
>A

∫ 1

0

aφ′2 + λ∗
∫ 1

0

xµφ1

−λ∗ <a>H

∫ 1

0

Bµφ1 + 2λ∗ < µ >A<a>H

∫ 1

0

Bφ1

−2λ∗ < µ >A

∫ 1

0

xφ1.

(4.4.19)

Moreover,∫ 1

0

aφ′2 = < µ >A −
∫ 1

0

D(x)dx− λ∗2

2
<a>H −λ∗2 <a>H

∫ 1

0

aB

+
λ∗2

2

∫ 1

0

a+ λ∗2
∫ 1

0

xa− λ∗2 <a>H<
x

a
>A

∫ 1

0

a

+ <a>H

∫ 1

0

D

a
− 2 < µ >A<a>H<

x

a
>A +λ∗2 <a>2

H<
x

a
>A,

where ∫ 1

0

D(x)dx =

∫ 1

0

∫ x

0

µ(y)dydx = < µ >A −
∫ 1

0

xµ, (4.4.20)
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and ∫ 1

0

D(x)

a(x)
dx =

∫ 1

0

∫ 1

y

1

a(x)
µ(y)dxdy

=

∫ 1

0

µ(y)

(
1

<a>H

−B(y)

)
dy =

< µ >A

<a>H

−
∫ 1

0

µB.

(4.4.21)

Having the above two equations together with the fact that λ∗2 =< µ >A<a>
−1
H , one

then gets∫ 1

0

aφ′2 =
< µ >A

2
+

∫ 1

0

xµ− < µ >A<a>H<
x

a
>A − <a>H

∫ 1

0

Bµ

− < µ >A

∫ 1

0

Ba− < µ >A<
x

a
>A

∫ 1

0

a+
< µ >A

<a>H

∫ 1

0

xa

+
< µ >A

2 <a>H

∫ 1

0

a.

(4.4.22)

Putting (4.4.11), (4.4.12) and (4.4.22) into (4.4.19) and using λ∗2 =< µ >A<a>
−1
H ,
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one then gets

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

aφ′2
2

+ 2 < µ >2
A<a>H

∫ 1

0

B2− < µ >2
A

∫ 1

0

B2a

− < µ >A<a>H

∫ 1

0

B2µ+ 2
< µ >2

A

<a>H

∫ 1

0

xBa

−2 < µ >2
A<

x

a
>A

∫ 1

0

Ba +
< µ >2

A

<a>H

∫ 1

0

Ba

+2 < µ >A

∫ 1

0

xBµ+ < µ >A

∫ 1

0

Bµ

−2 < µ >A<a>H<
x

a
>A

∫ 1

0

Bµ− 4 < µ >2
A

∫ 1

0

xB

− < µ >2
A

∫ 1

0

B + 2 < µ >2
A<a>H<

x

a
>A

∫ 1

0

B

−< µ >A

<a>H

∫ 1

0

x2µ− < µ >A

<a>H

∫ 1

0

xµ

+2 < µ >A<
x

a
>A

∫ 1

0

xµ− < µ >2
A

<a>2
H

∫ 1

0

x2a− < µ >2
A

<a>2
H

∫ 1

0

xa

+2
< µ >2

A

<a>H

<
x

a
>A

∫ 1

0

xa

− < µ >2
A

4 <a>H

(
2 <a>H<

x

a
>A −1

)2

+
2 < µ >2

A

3 <a>H

+
< µ >2

A

2 <a>H

− < µ >2
A

4 <a>H

(
2 <a>H<

x

a
>A −1

)2
∫ 1

0

a− < µ >2
A<

x

a
>A .

Moreover, for each x ∈ R, one can rewrite φ′2(x) as

φ′2(x) = < µ >A
x

a(x)
− D(x)

a(x)
+
< µ >A

<a>H

x− < µ >A B(x) +
< µ >A

2 <a>H

− < µ >A<
x

a
>A +

< µ >A

a
− <a>H

a

∫ 1

0

Bµ−
< µ >A<a>H<

x

a
>A

a
.

Consequently, the expanded form of a(x)(φ′2(x))2 consists of 45 terms. One integrates
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the expanded form of x 7→ a(x)φ′22 (x) over the interval [0, 1] to obtain∫ 1

0

aφ′2
2

= < µ >2
A

∫ 1

0

aB2+ <a>H

(∫ 1

0

Bµ

)2

− 2 < µ >2
A

∫ 1

0

xB

+2 < µ >A

∫ 1

0

BD − 2
< µ >2

A

<a>H

∫ 1

0

xaB

−< µ >2
A

<a>H

∫ 1

0

aB + 2 < µ >2
A<

x

a
>A

∫ 1

0

aB

−2 < µ >2
A

∫ 1

0

B + 2 < µ >2
A<a>H

∫ 1

0

B

∫ 1

0

Bµ

+2 <µ>2
A<a>H<

x

a
>A

∫ 1

0

B − 2 < µ >A<a>H<
x

a
>A

∫ 1

0

Bµ

+2 <a>H

∫ 1

0

D

a

∫ 1

0

Bµ− < µ >A

∫ 1

0

Bµ− < µ >A

∫ 1

0

Bµ

+2 < µ >A<a>H<
x

a
>A

∫ 1

0

Bµ− 2 < µ >A

∫ 1

0

Bµ

+2 < µ >A<a>H<
x

a
>A

∫ 1

0

Bµ+ < µ >2
A

∫ 1

0

x2

a
− 2 < µ >A

∫ 1

0

xD

a

+
2 < µ >2

A

3 <a>H

+
< µ >2

A

2 <a>H

− <µ>2
A<

x

a
>A +2 < µ >2

A<
x

a
>A

−2 <µ>2
A<a>H<

x

a
>2
A +

∫ 1

0

D2

a
− 2

< µ >A

<a>H

∫ 1

0

xD − < µ >A

<a>H

∫ 1

0

D

+2 <µ>A<
x

a
>A

∫ 1

0

D − 2 <µ>A

∫ 1

0

D

a
+ 2 < µ >A<a>H<

x

a
>A

∫ 1

0

D

a

+
< µ >2

A

<a>2
H

∫ 1

0

ax2 +
< µ >2

A

<a>2
H

∫ 1

0

ax− 2
< µ >2

A

<a>H

<
x

a
>A

∫ 1

0

ax+
< µ >2

A

<a>H

− < µ >2
A<

x

a
>A +

< µ >2
A

4 <a>2
H

∫ 1

0

a− < µ >2
A

<a>H

<
x

a
>A

∫ 1

0

a+
< µ >2

A

<a>H

− <µ>2
A<

x

a
>A + < µ >2

A<
x

a
>2
A

∫ 1

0

a− 2 < µ >2
A<

x

a
>A

+2 < µ >2
A <a>H <

x

a
>2
A +

< µ >2
A

<a>H

− 2 < µ >2
A<

x

a
>A

+ < µ >2
A<a>H<

x

a
>2
A .
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However∫ 1

0

B(x)dx =

∫ 1

0

∫ 1

y

1

a(y)
dxdy =

1

<a>H

− <
x

a
>A,∫ 1

0

xB =
1

2 <a>H

− 1

2

∫ 1

0

x2

a
,∫ 1

0

xD =
1

2

(
<µ>A −

∫ 1

0

x2µ

)
,

(4.4.23)

and ∫ 1

0

D2

a
=

∫ 1

0

D2(x)B′(x)dx

= D2(1)B(1)− 2

∫ 1

0

D(x)µ(x)B(x) =
<µ>2

A

<a>H

− 2

∫ 1

0

BDµ.

(4.4.24)

Using the equations (4.4.20), (4.4.21), (4.4.23) and (4.4.24) leads to∫ 1

0

aφ′2
2

= < µ >2
A

∫ 1

0

aB2+ <a>H

(∫ 1

0

Bµ

)2

+ 2 <µ>A

∫ 1

0

BD

−2
< µ >2

A

<a>H

∫ 1

0

xaB − 2

∫ 1

0

BDµ+ 2 < µ >2
A<

x

a
>A

∫ 1

0

aB

−< µ >2
A

<a>H

∫ 1

0

aB − 2 <a>H

(∫ 1

0

Bµ

)2

+ 2 < µ >A

∫ 1

0

Bµ

−2 <µ>A<a>H<
x

a
>A

∫ 1

0

Bµ− 2 <µ>A

∫ 1

0

xD

a
+ 2 < µ >2

A

∫ 1

0

x2

a

+
< µ >2

A

<a>2
H

∫ 1

0

ax2 +
< µ >A

<a>H

∫ 1

0

µx2 − 2 < µ >A<
x

a
>A

∫ 1

0

µx

+
< µ >A

<a>H

∫ 1

0

µx− 11 < µ >2
A

6 <a>H

+ 3 < µ >2
A<

x

a
>A

− <µ>2
A<a>H<

x

a
>2
A +

< µ >2
A

<a>2
H

∫ 1

0

ax− 2
< µ >2

A

<a>H

<
x

a
>A

∫ 1

0

xa

+
< µ >2

A

4 <a>2
H

∫ 1

0

a− < µ >2
A

<a>H

<
x

a
>A

∫ 1

0

a+ < µ >2
A<

x

a
>2
A

∫ 1

0

a.
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Putting the above result into
1

24
× ∂4k̃

∂L4
(λ∗, 0), one gets

1

24
× ∂4k̃

∂L4
(λ∗, 0) = − <a>H

(∫ 1

0

Bµ

)2

+ 2 < µ >2
A<a>H

∫ 1

0

B2

− < µ >A<a>H

∫ 1

0

B2µ+ 2 <µ>A

∫ 1

0

BD − 2

∫ 1

0

BDµ

+2 <µ>A

∫ 1

0

xBµ+ 3 < µ >A

∫ 1

0

Bµ

−4 <µ>A<a>H<
x

a
>A

∫ 1

0

Bµ− 2 <µ>A

∫ 1

0

xD

a

+4 < µ >2
A

∫ 1

0

x2

a
− 47 < µ >2

A

12 <a>H

+ 6 < µ >2
A<

x

a
>A

−4 <µ>2
A<a>H<

x

a
>2
A.

Since ∫ 1

0

xBµ =
< µ >A

<a>H

−
∫ 1

0

xD

a
−
∫ 1

0

DB,

and using (4.4.24), it follows that

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

D2

a
− 4 < µ >A

∫ 1

0

xD

a
+ 4 < µ >2

A

∫ 1

0

x2

a

− <a>H

(∫ 1

0

Bµ

)2

+ 2 < µ >2
A<a>H

∫ 1

0

B2

− < µ >A<a>H

∫ 1

0

B2µ− 35 < µ >2
A

12 <a>H

+ 3 < µ >A

∫ 1

0

Bµ

−4 <µ>A<a>H<
x

a
>A

∫ 1

0

Bµ+ 6 < µ >2
A<

x

a
>A

−4 <µ>2
A<a>H<

x

a
>2
A

Furthermore,∫ 1

0

B2µ = B2(1)D(1)− 2

∫ 1

0

BD

a
=
< µ >A

<a>2
H

− 2

∫ 1

0

BD

a
. (4.4.25)
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Using (4.4.21) and (4.4.25), one gets that

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

(D− <µ>A x)2

a
− 2 < µ >A

∫ 1

0

xD

a
+ 3 < µ >2

A

∫ 1

0

x2

a

− <a>H

(
< µ >2

A

<a>2
H

− 2
< µ >A

<a>H

∫ 1

0

D

a
+

(∫ 1

0

D

a

)2
)

+2 < µ >2
A<a>H

∫ 1

0

B2 − < µ >2
A

<a>H

+ 2 <µ>A<a>H

∫ 1

0

BD

a

+3
< µ >2

A

<a>H

− 3 < µ >A

∫ 1

0

D

a
− 4 < µ >2

A<
x

a
>A

+4 <µ>A<a>H<
x

a
>A

∫ 1

0

D

a
− 35 < µ >2

A

12 <a>H

+6 < µ >2
A<

x

a
>A −4 <µ>2

A<a>H<
x

a
>2
A.

Hence,

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

(D− <µ>A x)2

a
− <a>H

(∫ 1

0

D

a
− < µ >A<

x

a
>A

)2

+ <µ>A

[
< µ >A<a>H

∫ 1

0

B2− <a>H

∫ 1

0

B2µ

+ < µ >A<a>H

∫ 1

0

B2 + 2 <a>H<
x

a
>A

∫ 1

0

D

a

−2

∫ 1

0

xD

a
−
∫ 1

0

D

a
+ 3 <µ>A

∫ 1

0

x2

a
− 3 <µ>A<a>H<

x

a
>2
A

+2 < µ >A<
x

a
>A −

11 < µ >A

12 <a>H

]

=

∫ 1

0

(D− <µ>A x)2

a
− <a>H

(∫ 1

0

D

a
− < µ >A<

x

a
>A

)2

+ <µ>A

[
< µ >A<a>H

∫ 1

0

(
B − x

<a>H

)2

− <µ>A

4 <a>H

+ <a>H

∫ 1

0

B2(<µ>A −µ) + 2 <a>H<
x

a
>A

∫ 1

0

D

a

−3 <µ>A<a>H<
x

a
>2
A −2

∫ 1

0

xD

a
−
∫ 1

0

D

a

+2 < µ >A<
x

a
>A +2 < µ >A

∫ 1

0

x2

a

]
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=

∫ 1

0

(D− <µ>A x)2

a
− <a>H

(∫ 1

0

D

a
− < µ >A<

x

a
>A

)2

+ < µ >2
A<a>H

[∫ 1

0

(
B − x

<a>H

)2

−
(

1

2 <a>H

− <
x

a
>A

)2
]

+ < µ >2
A<

x

a
>A −2 < µ >2

A<a>H<
x

a
>2
A +2 < µ >2

A

∫ 1

0

x2

a

+ <a>H< µ >A

∫ 1

0

B2(<µ>A −µ)

+2 < µ >A<a>H<
x

a
>A

∫ 1

0

D

a
− 2 < µ >A

∫ 1

0

xD

a

− < µ >A

∫ 1

0

D

a
.

Moreover, ∫ 1

0

B −
∫ 1

0

x

<a>H

=
1

2 <a>H

− <
x

a
>A .

Thus,

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

(D− <µ>A x)2

a
− <a>H

(∫ 1

0

D

a
− < µ >A<

x

a
>A

)2

+ < µ >2
A<a>H

[∫ 1

0

(
B − x

<a>H

)2

−
(∫ 1

0

B −
∫ 1

0

x

<a>H

)2
]

+C,

where

C = <a>H< µ >A

∫ 1

0

B2(<µ>A −µ) + 2 < µ >A<a>H<
x

a
>A

∫ 1

0

D

a

−2 < µ >A

∫ 1

0

xD

a
− < µ >A

∫ 1

0

D

a
+ < µ >2

A<
x

a
>A −2 < µ >2

A<a>H<
x

a
>2
A

+2 < µ >2
A<

x2

a
>A .

Since B′(x) =
1

a(x)
over R, it follows that

∫ 1

0

Bx

a
= B2(1)−

∫ 1

0

BB′x−
∫ 1

0

B2.
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Consequently, ∫ 1

0

B2 =
1

<a>2
H

− 2

∫ 1

0

Bx

a
. (4.4.26)

Together with (4.4.25), it follows that∫ 1

0

B2(<µ>A −µ) = 2

∫ 1

0

B(D− < µ >A x)

a
.

Putting the above result into the expression of C, one then obtains

C = 2 < µ >A<a>H<
x

a
>A

∫ 1

0

D− < µ >A x

a

− < µ >A

∫ 1

0

D− < µ >A x

a
− 2 < µ >A

∫ 1

0

(D− < µ >A x)x

a

+2 < µ >A<a>H

∫ 1

0

B(D− < µ >A x)

a

= 2 < µ >A<a>H

∫ 1

0

(
D− < µ >A x

a

)(
B − x

<a>H

)
+2 < µ >A<a>H

∫ 1

0

D− < µ >A x

a

∫ 1

0

(
x

a
− x

<a>H

)
= 2 < µ >A<a>H

∫ 1

0

(
D− < µ >A x

a

)(
B − x

<a>H

)
−2 < µ >A<a>H

∫ 1

0

D− < µ >A x

a

∫ 1

0

(
B − x

<a>H

)
.

(4.4.27)

For all x ∈ R, let

E(x) = D(x)− <µ>A x, and F (x) = B(x)− x

<a>H

.

Thus,

C = 2 < µ >A<a>H

∫ 1

0

EF

a
− 2 < µ >A<a>H

∫ 1

0

E

a

∫ 1

0

F,

whence,

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

E2

a
− <a>H

(∫ 1

0

E

a

)2

+ < µ >2
A<a>H

[∫ 1

0

F 2 −
(∫ 1

0

F

)2
]

+2 < µ >A<a>H

∫ 1

0

EF

a
− 2 < µ >A<a>H

∫ 1

0

E

a

∫ 1

0

F.
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Since ∫ 1

0

F =<a>H

∫ 1

0

F

a
and

∫ 1

0

F 2 =<a>H

∫ 1

0

F 2

a
,

one concludes that

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

E2

a
+ < µ >2

A<a>
2
H

∫ 1

0

F 2

a
+ 2 < µ >A<a>H

∫ 1

0

EF

a

− <a>H

(∫ 1

0

E

a

)2

− < µ >2
A<a>

3
H

(∫ 1

0

F

a

)2

−2 < µ >A<a>
2
H

∫ 1

0

E

a

∫ 1

0

F

=

∫ 1

0

(E+ < µ >A<a>H F )2

a

− <a>H

(∫ 1

0

E

a
+ < µ >A<a>H

∫ 1

0

F

a

)2

.

For all x ∈ R, denote

A(x) = E(x)+ < µ >A<a>H F (x)

=

∫ x

0

µ(y)dy + <µ>A<a>H

∫ x

0

1

a(y)
dy − 2 <µ>A x.

It follows that

1

24
× ∂4k̃

∂L4
(λ∗, 0) =

∫ 1

0

A(x)2

a(x)
dx − <a>H

(∫ 1

0

A(x)

a(x)
dx

)2

.

From (4.4.9), one concludes that

d2c∗L
dL2

→ γ := 2
√
<a>H<µ>

−1
A ×

[∫ 1

0

A(x)2

a(x)
dx − <a>H

(∫ 1

0

A(x)

a(x)
dx

)2
]

as L→ 0+.

Cauchy-Schwarz inequality and the fact a(x) > 0 in R yield that γ ≥ 0. Furthermore,
γ = 0 if and only if A is constant. But since A(0) = 0, the condition γ = 0 is equivalent
to A′(x) = 0 for all x, which means that

µ(x)

<µ>A

+
<a>H

a(x)
= 2 for all x ∈ R.

In particular, if µ is constant and a is not constant (resp. if a is constant and µ is not

constant), then this condition is not satisfied, whence lim
L→0+

d2c∗L
dL2

> 0 in this case. That
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completes the proofs of Theorem 4.2.3 and Corollary 4.2.4. �

Remark 4.4.2 In the case when <µ>A= 0 and µ 6≡ 0, then ρ1,L < 0 for each L > 0,
and the minimal speed c∗L of pulsating traveling fronts is well-defined and it is still
positive. From the arguments developed in this section and in the previous one, one
can check that, in this case,

c∗L → 0+, λ∗L → 0+,
dλ∗L
dL
→
√

β

<a>H

> 0 and
dc∗L
dL
→ 2

√
β <a>H > 0 as L→ 0+,

where

β =

∫ 1

0

A(x)2

a(x)
dx − <a>H

(∫ 1

0

A(x)

a(x)
dx

)2

> 0

and A(x) =

∫ x

0

µ(y)dy. Therefore, the speeds c∗L are increasing in a right neighbour-

hood of L = 0 but, in this case, the variation is of the first order. Notice that the
formula limL→0+

dc∗L
dL

= 2
√
β <a>H is coherent with the numerical calculations done

by Kinezaki, Kawasaki and Shigesada in [21] (see Figure 3b with <µ>A= 0, that is
A = 0 under the notations of [21]).

4.5 Proof of Theorem 4.2.6

As in the proofs of the previous theorems, we use the following formula for the
minimal speed:

c∗z = min
λ>0

kz(λ)

λ
=
kz(λ

∗
z)

λ∗z
, (4.5.1)

where kz(λ) is defined as the unique real number such that there exists a positive
L0-periodic function ψ satisfying:

ψ′′ + 2λ ψ′ + λ2ψ + µz(x)ψ = kz(λ)ψ in (0, L0). (4.5.2)

Setting ϕ(x) = eλxψ(x), the above equation and periodicity conditions become
equivalent to: 

ϕ′′ + µz(x)ϕ = kz(λ)ϕ in (0, L0),

ϕ(L0) = eλL0ϕ(0),

ϕ′(L0) = eλL0ϕ′(0),

(4.5.3)

which therefore admits, for every positive λ, a unique solution (ϕ, kz(λ)) with ϕ > 0

satisfying the normalisation condition ϕ(0) = 1.
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Let λ > 0 be fixed. System (4.5.3), together with the normalization condition
ϕ(0) = 1, is equivalent to:

ϕ′′ = (kz(λ)−m)ϕ on [0, l/2),

ϕ′′ = kz(λ)ϕ on [l/2, l/2 + z),

ϕ′′ = (kz(λ)−m)ϕ on [l/2 + z, l + z),

ϕ′′ = kz(λ)ϕ on [l + z, L0),

ϕ(0) = 1, ϕ(L0) = eλL0ϕ(0), ϕ′(L0) = eλL0ϕ′(0).

(4.5.4)

For each z ∈ [0, L0 − l], let λ∗z be defined by the formula (4.5.1). We have the
following lemma:

Lemma 4.5.1 Assume that l > 3L0/4. Then, for all z ∈ [0, L0 − l], we have kz(λ∗z) >
m.

Proof of Lemma 4.5.1. Let us divide equation (4.5.2) by ψ and integrate by parts
over [0, L0]. Using the L0-periodicity of ψ, we obtain:∫ L0

0

|ψ′|2

ψ2
+ L0λ

2 +

∫ L0

0

µz(x)dx = L0kz(λ).

Thus,

kz(λ) ≥ λ2 +
1

L0

∫ L0

0

µz(x)dx = λ2 +m
l

L0

. (4.5.5)

From (4.5.1) and (4.5.5) we get:

(λ∗z)
2 +m

l

L0

≤ kz(λ
∗
z) ≤ 2λ∗z

√
m.

Thus, (λ∗z)
2 − 2λ∗z

√
m+ml/L0 ≤ 0, which implies that

λ∗z ≥
√
m−

√
m−ml/L0.

Using (4.5.5), we finally get

kz(λ
∗
z) ≥ 2m(1−

√
1− l/L0) > m,

as soon as l > 3L0/4. �

We now turn to the proof of Theorem 4.2.6 and we assume that l ∈ (3L0/4, L0).
Using the fact that ϕ ∈ C1(R), a straightforward but lengthy computation shows that,
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whenever kz(λ) > m, system (4.5.4) is equivalent to

F (z, λ, kz(λ))

G(z, kz(λ))
= 0,

where F and G are two functions, defined respectively in [0, L0−l]×(0,+∞)×[m,+∞)

and [0, L0 − l]× [m,+∞) by:

F (z, λ, s) = 4(2s−m)
√
s
√
s−m sinh(l

√
s−m) sinh(α

√
s)

+m2 cosh(β
√
s)(1− cosh(l

√
s−m))

+8(s2 −ms)[cosh(l
√
s−m) cosh(α

√
s)− cosh(λL0)]

+m2 cosh(α
√
s)(cosh(l

√
s−m)− 1),

(4.5.6)

and

G(z, s) = m
√
s cosh(l

√
s−m) [4 sinh(α

√
s)(s/m− 1)

+ (sinh(α
√
s)− sinh(β

√
s))
(
1− 1/ cosh(l

√
s−m)

)]
+m
√
s−m sinh(l

√
s−m) cosh(α

√
s)
[

4s
m
− 1 + cosh(β

√
s)

cosh(α
√
s)

]
,

(4.5.7)

with α := L0 − l and β := L0 − l − 2z.

Each factor in the expression (4.5.7) is positive, as soon as s > m, for z ∈ [0, L0 − l].
Thus, whenever kz(λ) > m, system (4.5.4) is equivalent to the simpler equation

F (z, λ, kz(λ)) = 0. (4.5.8)

Furthermore, from Krein-Rutman theory, since the eigenfunction ψ in (4.5.2) is posi-
tive, kz(λ) is the largest real eigenvalue of the operator ψ 7→ ψ′′+2λ ψ′+λ2ψ+µz(x)ψ.
This result, implies that, for each z ∈ [0, L0 − l], and each λ > 0, kz(λ) is the largest
real root of equation (4.5.8), as soon as kz(λ) > m.

From equation (4.5.6), we easily see that

lim
s→+∞

F (z, λ, s) = +∞, (4.5.9)

for all z ∈ [0, L0 − l] and λ > 0. Moreover, differentiating (4.5.6) with respect to z, we
obtain

∂F

∂z
(z, λ, s) = 2m2

√
s sinh(

√
s(L0 − l − 2z))

[
cosh(l

√
s−m)− 1

]
.
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Thus, for all s > m, and λ > 0,

∂F

∂z
(z, λ, s) > 0 for z ∈ [0, (L0 − l)/2), (4.5.10)

and
∂F

∂z
(z, λ, s) < 0 for z ∈ ((L0 − l)/2, L0 − l].

Now, take z1 < z2 in [0, (L0 − l)/2], and assume that c∗z1 ≤ c∗z2 . It follows from
formula (4.5.1) that kz2(λ) ≥ c∗z2λ, for all λ > 0. In particular,

kz2(λ∗z1) ≥ c∗z2λ
∗
z1
≥ c∗z1λ

∗
z1

= kz1(λ∗z1). (4.5.11)

From Lemma 4.5.1, we know that kz1(λ∗z1) > m. Thus, (4.5.11) implies kz2(λ∗z1) > m.
From the above discussion, kz2(λ∗z1) is therefore the largest real root of the equation
F (z2, λ

∗
z1
, kz2(λ∗z1)) = 0, and, similarly, kz1(λ∗z1) is the largest real root of F (z1, λ

∗
z1
, kz1(λ∗z1))

= 0. Using (4.5.9) and (4.5.10), and since 0 ≤ z1 < z2 ≤ (L0 − l)/2, we obtain
kz2(λ∗z1) < kz1(λ∗z1), which contradicts (4.5.11). Therefore, c∗z is a decreasing function
of z in [0, (L0 − l)/2]. Similar arguments imply that c∗z is an increasing function of z
in [(L0 − l)/2, L0 − l]. This concludes the proof of Theorem 4.2.6. �
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