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Abstract This paper is concerned with some nonlinear propagation phenomena for
reaction–advection–diffusion equations in a periodic framework. It deals with travelling
wave solutions of the equation

ut = ∇ · (A(z)∇u) + q(z) · ∇u + f (z, u), t ∈ R, z ∈ �,
propagating with a speed c. In the case of a “combustion” nonlinearity, the speed c exists
and it is unique, while the front u is unique up to a translation in t . We give a min–max
and a max–min formula for this speed c. On the other hand, in the case of a “ZFK” or a
“KPP” nonlinearity, there exists a minimal speed of propagation c∗. In this situation, we give
a min–max formula for c∗. Finally, we apply this min–max formula to prove a variational
formula involving eigenvalue problems for the minimal speed c∗ in the “KPP” case.
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48 M. I. El Smaily

1 Introduction and main results

1.1 A description of the periodic framework

The goal of this paper is to give some variational formulæ for the speeds of pulsating trav-
elling fronts corresponding to reaction–diffusion–advection equations set in a heterogenous
periodic framework. In fact, many works, such as Hamel [6], Heinze et al. [9], and Volpert
et al. [16] treated this problem in simplified situations and under more strict assumptions. In
this paper, we treat the problem in the most general periodic framework. We are concerned
with equations of the type{

ut = ∇ · (A(z)∇u)+ q(z) · ∇u + f (z, u), t ∈ R, z ∈ �,
ν · A ∇u(t, z) = 0, t ∈ R, z ∈ ∂�, (1.1)

where ν(z) is the unit outward normal on ∂� at the point z. In this context, let us detail the
mathematical description of the heterogeneous setting.

Concerning the domain, let N ≥ 1 be the space dimension, and let d be an integer so
that 1 ≤ d ≤ N . For an element z = (x1, x2, . . . , xd , xd+1, . . . , xN ) ∈ R

N , we denote by
x = (x1, x2, . . . , xd) and by y = (xd+1, . . . , xN ) the two tuples so that z = (x, y). Let
L1, . . . , Ld be d positive real numbers, and let � be a C3 non empty connected open subset
of R

N satisfying{ ∃R ≥ 0; ∀(x, y) ∈ �, |y| ≤ R,

∀ (k1, . . . , kd) ∈ L1Z × · · · × LdZ, � = �+ ∑d
k=1 ki ei ,

(1.2)

where (ei )1≤i≤N is the canonical basis of R
N .

As d ≥ 1, one notes that the set � satisfying (1.2) is unbounded. We have many arche-
types of such a domain. The case of the whole space R

N corresponds to d = N , where
L1, . . . , L N are any positive numbers. The case of the whole space R

N with a periodic array
of holes can also be considered. The case d = 1 corresponds to domains which have only
one unbounded dimension, namely infinite cylinders which may be straight or have oscil-
lating periodic boundaries, and which may or may not have periodic perforations. The case
2 ≤ d ≤ N − 1 corresponds to infinite slabs.

In this periodic situation, we give the following definitions:

Definition 1.1 (Periodicity cell) The set

C = {(x, y) ∈ �; x1 ∈ (0, L1), . . . , xd ∈ (0, Ld)}
is called the periodicity cell of �.

Definition 1.2 (L-periodic fields) A fieldw : � → R
N is said to be L-periodic with respect

to x if

w(x1 + k1, . . . , xd + kd , y) = w(x1, . . . , xd , y)

almost everywhere in �, and for all k = (k1, . . . , kd) ∈ ∏d
i=1 Li Z.

Let us now detail the assumptions concerning the coefficients in (1.1). First, the diffusion
matrix A(x, y) = (Ai j (x, y))1≤i, j≤N is a symmetric C2,δ(�) (with δ > 0) matrix field
satisfying
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Min–max formulæ for the speeds of pulsating travelling fronts 49

⎧⎪⎨
⎪⎩

A is L-periodic with respect to x,

∃ 0 < α1 ≤ α2; ∀(x, y) ∈ �,∀ ξ ∈ R
N ,

α1|ξ |2 ≤ ∑
1≤i, j≤N Ai j (x, y)ξi ξ j ≤ α2|ξ |2.

(1.3)

The underlying advection q(x, y) = (q1(x, y), . . . , qN (x, y)) is a C1,δ(�) (with δ > 0)
vector field satisfying: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

q is L-periodic with respect to x,

∇ · q = 0 in �,

q · ν = 0 on ∂�,

∀1 ≤ i ≤ d,
∫

C qi dx dy = 0.

(1.4)

Lastly, let f = f (x, y, u) be a function defined in �× R such that

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f is globally Lipschitz-continuous in �× R,

∀ (x, y) ∈ �,∀s ∈ (−∞, 0] ∪ [1,+∞), f (s, x, y) = 0,

∃ρ ∈ (0, 1), ∀(x, y) ∈ �, ∀1 − ρ ≤ s ≤ s′ ≤ 1,

f (x, y, s) ≥ f (x, y, s′).

(1.5)

One assumes that

f is L-periodic with respect to x . (1.6)

Moreover, the function f is assumed to be of one of the following two types: either{ ∃ θ ∈ (0, 1), ∀(x, y) ∈ �, ∀ s ∈ [0, θ ], f (x, y, s) = 0,

∀ s ∈ (θ, 1), ∃ (x, y) ∈ � such that f (x, y, s) > 0,
(1.7)

or { ∃δ > 0, the restriction of f to �× [0, 1] is of class C1, δ,

∀s ∈ (0, 1), ∃ (x, y) ∈ � such that f (x, y, s) > 0.
(1.8)

Definition 1.3 A nonlinearity f satisfying (1.5), (1.6) and (1.7) is called a “combustion”
nonlinearity. The value θ is called the ignition temperature.

A nonlinearity f satisfying (1.5), (1.6), and (1.8) is called a ZFK (for Zeldovich–Frank–
Kamenetskii) nonlinearity.

If f is a “ZFK” nonlinearity that satisfies

f ′
u(x, y, 0) = lim

u→0+ f (x, y, u)/u > 0, (1.9)

with the additional assumption

∀(x, y, s) ∈ �× (0, 1), 0 < f (x, y, s) ≤ f ′
u(x, y, 0)× s, (1.10)

then f is called a KPP (for Kolmogorov, Petrovsky, and Piskunov, see [11]) nonlinearity.

The simplest examples of “combustion” and “ZFK” nonlinearities are when
f (x, y, u) = f (u) where: either
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f is Lipschitz-continuous in R,

∃θ ∈ (0, 1), f (s) = 0 for all s ∈ (−∞, θ ] ∪ [1,+∞),

f (s) > 0 for all s ∈ (θ, 1),

∃ ρ ∈ (0, 1 − θ), f is non-increasing on [1 − ρ, 1],
(1.11)

or ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f is defined on R, f ≡ 0 in R\(0, 1),

∃ δ > 0, the restriction of f on the interval [0, 1] is C1,δ([0, 1]),
f (0) = f (1) = 0, and f (s) > 0 for all s ∈ (0, 1),

∃ ρ > 0, f is non-increasing on [1 − ρ, 1].
(1.12)

If f = f (u) satisfies (1.11), then it is a homogeneous “combustion” nonlinearity. On the
other hand, a nonlinearity f = f (u) that satisfies (1.12) is homogeneous of the “ZFK” type.
Moreover, a KPP homogeneous nonlinearity is a function f = f (u) that satisfies (1.12) with
the additional assumption

∀ s ∈ (0, 1), 0 < f (s) ≤ f ′(0) s. (1.13)

As typical examples of nonlinear heterogeneous sources satisfying (1.5) and (1.6) and
either (1.7) or (1.8), one can consider the functions of the type

f (x, y, u) = h(x, y) g(u),

where h is a globally Lipschitz-continuous, positive, bounded, and L-periodic with respect
to x function defined in �, and g is a function satisfying either (1.11) or (1.12).

Definition 1.4 (Pulsating fronts and speed of propagation) Let e = (e1, . . . , ed) be an arbi-
trarily given unit vector in R

d .A function u = u(t, x, y) is called a pulsating travelling front
propagating in the direction of −e with an effective speed c 
= 0, if u is a classical solution
of: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (A(x, y)∇u)+ q(x, y) · ∇u + f (x, y, u), t ∈ R, (x, y) ∈ �,
ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂�,
∀ k ∈ ∏d

i=1 Li Z, ∀ (t, x, y) ∈ R ×�, u
(
t + k·e

c , x, y
) = u(t, x + k, y),

limx ·e→−∞ u(t, x, y) = 0, and limx ·e→+∞ u(t, x, y) = 1,

0 ≤ u ≤ 1,

(1.14)

where the above limits hold locally in t and uniformly in y and in the directions of R
d which

are orthogonal to e .

Several works were concerned with pulsating travelling fronts in periodic media (see
[1,2,10,12,14,15,18]).

In the general periodic framework, we recall two essential known results and then we
move to our main results.

Theorem 1.5 (Berestycki and Hamel [1]) Let � be a domain satisfying (1.2), let e be any
unit vector of R

d and let f be a nonlinearity satisfying (1.5) and (1.6) and (1.7). Assume,
furthermore, that A and q satisfy (1.3) and (1.4) respectively. Then, there exists a classical
solution (c, u) of (1.14). Moreover, the speed c is positive and unique while the function
u = u(t, x, y) is increasing in t and it is unique up to a translation. Precisely, if (c1, u1) and
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(c2, u2) are two classical solutions of (1.14), then c1 = c2 and there exists h ∈ R such that
u1(t, x, y) = u2(t + h, x, y) for all (t, x, y) ∈ R ×�.

In a periodic framework, Theorem 1.5 yields the existence of a pulsating travelling front
in the case of a “combustion” nonlinearity with an ignition temperature θ. It implies, also,
the uniqueness of the speed and of the profile of u. For “ZFK” nonlinearities, we have

Theorem 1.6 (Berestycki and Hamel [1]) Let� be a domain satisfying (1.2), let e be any unit
vector in R

d and let f be a nonlinearity satisfying (1.5) and (1.6) and (1.8). Assume, further-
more, that A and q satisfy (1.3) and (1.4) respectively. Then, there exists c∗

�,A,q, f (e) > 0 such

that the problem (1.14) has no solution (c, u) such that ut > 0 in R ×� if c < c∗
�,A,q, f (e)

while, for each c ≥ c∗
�,A,q, f (e), it has a solution (c, u) such that u is increasing in t.

In fact, the existence and the monotonicity of a solution u∗ = u∗(t, x, y) of (1.14) for
c = c∗

�,A,q, f (e) > 0 holds by approaching the “ZFK” nonlinearity f by a sequence of com-

bustion nonlinearities ( fθ )θ such that fθ → f uniformly in R × � as θ ↘ 0+ (see more
details in step 2 of the proof of formula (1.17), Sect. 4). It follows, from Theorem 1.5, that
for each θ > 0, there exists a solution (cθ , uθ ) of (1.14) with the nonlinearity fθ such that uθ
is increasing with respect to t . From parabolic estimates, the functions uθ , converge up to a
subsequence, to a function u∗ in C2

loc(R ×�) as θ → 0+.Moreover, Lemmas 6.1 and 6.2 in
[1] yield the existence of a constant c∗(e) = c∗

�,A,q, f (e) > 0 such that cθ ↗ c∗(e) as θ ↘ 0.
Hence, the couple (c∗(e), u∗) becomes a classical solution of (1.14) with the nonlinearity f
and one gets that u∗ is nondecreasing with respect to t as a limit of the increasing functions
uθ . Finally, one applies the strong parabolic maximum principle and Hopf lemma to get that
w is positive in R × �. In other words, u∗ is increasing in t ∈ R. Actually, in the “ZFK”
case, under the additional non-degeneracy assumption (1.9), it is known that any pulsating
front with speed c is increasing in time and c ≥ c∗(e) (see [1]).

The value c∗
�,A,q, f (e) which appears in Theorem 1.6 is called the minimal speed of

propagation of the pulsating travelling fronts propagating in the direction −e (satisfying the
reaction–advection–diffusion problem (1.14)).

We mention that the uniqueness of the pulsating travelling fronts, up to shifts in time,
for each c ≥ c∗

�,A,q, f (e), has been proved recently by Hamel and Roques [7] for “KPP”
nonlinearities. On the other hand, a variational formula for the minimal speed of propagation
c∗
�,A,q, f (e), in the case of a KPP nonlinearity, was proved in Berestycki et al. [2]. This

formula involves eigenvalue problems and gives the value of the minimal speed in terms of
the domain� and in terms of the coefficients A, q, and f appearing in problem (1.14). The
asymptotic behaviors and the variations of the minimal speed of propagation, as a function of
the diffusion, advection and reaction factors and as a function of the periodicity parameters,
were widely studied in Berestycki et al. [3], El Smaily [4], El Smaily et al. [5], Heinze [8],
Ryzhik and Zlatoš [13], and Zlatoš [20].

1.2 Main results

In the periodic framework, having (in Theorems 1.5 and 1.6) the existence results and some
qualitative properties of the pulsating travelling fronts propagating in the direction of a fixed
unit vector −e ∈ R

d , we search a variational formula for the unique speed of propagation
c = c(e)whenever f is of the “combustion” type, and for the minimal speed c∗ = c∗

�,A,q, f (e)
whenever f is of the “ZFK” or the “KPP” type. We will answer the above investigations in
the following theorem, but before this, we introduce the following
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Notation 1.7 For each function φ = φ(s, x, y) in C1,δ(R ×�) (for some δ ∈ [0, 1)), let

F[φ] := ∇x,y · (A∇x,yφ)+ (ẽAẽ)φss + ∇x,y · (Aẽφs)+ ∂s(ẽA∇x,yφ) in D′(R ×�),

where ẽ = (e, 0, . . . , 0) ∈ R
N and e denotes a unit vector of R

d .

The first main result deals with the “combustion” case.

Theorem 1.8 Let e a unit vector of R
d . Assume that� is a domain satisfying (1.2) and f is

a nonlinear source satisfying (1.5) and (1.6). Assume furthermore that A and q satisfy (1.3)
and (1.4) respectively. Consider the set of functions

E = {
ϕ = ϕ(s, x, y), ϕ is of class C1,µ(R ×�) for each µ ∈ [0, 1),

F[ϕ] ∈ C(R ×�), ϕ is L-periodic with respect to x, ϕs > 0

in R ×�, ϕ(−∞, ·, ·) = 0, ϕ(+∞, ·, ·) = 1 uniformly in �, and

ν · A(∇x,yϕ + ẽϕs) = 0 on R × ∂�
}
.

For each ϕ ∈ E, we define the function Rϕ ∈ C(R ×�) as, for all (s, x, y) ∈ R ×�,

R ϕ(s, x, y) = F[ϕ](s, x, y)+ q · ∇x,yϕ(s, x, y)+ f (x, y, ϕ)

∂sϕ(s, x, y)
+ q(x, y) · ẽ.

If f is a nonlinearity of “combustion” type satisfying (1.7), then the unique speed c(e) that
corresponds to problem (1.14) is given by

c(e) = min
ϕ∈E

sup
(s,x,y)∈R×�

R ϕ(s, x, y), (1.15)

c(e) = max
ϕ∈E

inf
(s,x,y)∈R×�

R ϕ(s, x, y). (1.16)

Furthermore, the min in (1.15) and the max in (1.16) are attained by, and only by, the function
φ(s, x, y) = u( s−x ·e

c(e) , x, y) and its shifts φ(s +τ, x, y) for any τ ∈ R,where u is the solution
of (1.14) with a speed c(e) (whose existence and uniqueness up to a translation in t follow
from Theorem 1.5).

The second result is concerned with “ZFK” nonlinearities.

Theorem 1.9 Under the same notations of Theorem 1.8, if f is a nonlinearity of “ZFK”
type satisfying (1.5), (1.6) and (1.8), then the minimal speed c∗

�,A,q, f (e) is given by

c∗
�,A,q, f (e) = min

ϕ∈E
sup

(s,x,y)∈R×�
R ϕ(s, x, y). (1.17)

Furthermore, the min is attained by the function φ∗(s, x, y) = u∗( s−x ·e
c∗(e) , x, y) and its shifts

φ∗(s + τ, x, y) for any τ ∈ R, where u∗ is any solution of (1.14) propagating with the speed
c∗(e) = c∗

�,A,q, f (e).

In particular, Theorem 1.9 yields that formula (1.17) holds in the “KPP” case (1.10) as
well.

Remark 1.10 In Theorem 1.8, the min and the max are attained by, and only by, the pulsating
front φ(s, x, y) and its shifts φ(s +τ, x, y) for all τ ∈ R. In Theorem 1.9, the min is achieved
by the front φ∗(s, x, y) with the speed c∗(e) and all its shifts φ∗(s + τ, x, y). Actually, if
the pulsating front φ∗ is unique up to shift, then φ∗ and its shifts are the unique minimizers
in formula (1.17). The uniqueness is known in the “KPP” case (see Hamel and Roques [7]),
but it is still open in the general “ZFK” case.
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We mention that a max–min formula of the type (1.16) can not hold for the minimal speed
c∗(e) in the “ZFK” or the “KPP” case. A simple justification is given in Sect. 2.

The variational formulations of the speeds of propagation which are given in Theorems 1.8
and 1.9 are more general than those in Hamel [6] and Heinze et al. [9]. In Theorems 1.8 and 1.9,
we consider nonhomogeneous nonlinearities f = f (x, y, u) and the domain� is in the most
general periodic situation. However, in [6], the domain was an infinite cylinder of R

N and
the advection q was in the form of shear flows. Moreover, in this paper, the nonhomogeneous
operator ∇ · (A∇u) replaces the Laplace operator �u taken in [6]. On the other hand, in
[9], the domain � was an infinite cylinder in R

N with a bounded cross section. Namely,
� = R × ω ⊂ R

N where the cross section ω is a bounded domain in R
N−1. Moreover, the

authors did not consider an advection field in [9]. Finally, concerning the nonlinearities, they
were depending only on u (i.e f = f (u) and is satisfying either (1.11) or (1.12)) in both of
[6] and [9].

Besides the fact that we consider here a wider family of diffusion and reaction coeffi-
cients, our assumptions are less strict than those supposed in [9] and [16]. Roughly speaking,
the authors, in [9] and [16], assume a stability condition on the pulsating travelling fronts.
We mention that such a stability condition is fulfilled in the homogenous setting; however,
it has not been rigorously proved so far that this condition is satisfied in the heterogenous
setting. Meanwhile, the assumptions of the present paper only involve the coefficients of the
reaction–advection–diffusion equation (1.14), and they can then be checked easily.

Actually, in the “KPP” case, another “simpler” variational formula for the minimal speed
c∗(e) = c∗

�,A,q, f (e) is known. This known formula involves only the linearized nonlinearity
f at u = 0. Namely, it follows from [2] that

Theorem 1.11 (Berestycki et al. [2]) Let e be a fixed unit vector in R
d and let ẽ =

(e, 0, . . . , 0) ∈ R
N . Assume that f is a “KPP” nonlinearity and that �, A and q sat-

isfy (1.2), (1.3) and (1.4), respectively. Then, the minimal speed c∗(e) of pulsating fronts
solving (1.14) and propagating in the direction of e is given by

c∗(e) = c∗
�,A,q, f (e) = min

λ>0

k(λ)

λ
, (1.18)

where k(λ) = k�,e,A,q,ζ (λ) is the principal eigenvalue of the operator L�,e,A,q,ζ,λ which is
defined by

L�,e,A,q,ζ,λψ := ∇ · (A∇ψ)+ 2λẽ · A∇ψ + q · ∇ψ
+ [
λ2ẽAẽ + λ∇ · (Aẽ)+ λq · ẽ + ζ

]
ψ (1.19)

acting on the set

Ẽλ = {
ψ ∈ C2(�), ψ is L-periodic with respect to x and

ν · A∇ψ = −λ(ν · Aẽ)ψ on ∂�
}
.

In our last result, we prove that formula (1.17) implies formula (1.18) in the “KPP” case,
but under some additional assumptions on the advection and the diffusion coefficients. This
result gives an alternate proof of the formula (1.18).

Theorem 1.12 Let e be a fixed unit vector in R
d and let ẽ = (e, 0, . . . , 0) ∈ R

N . Assume
that f is a “KPP” nonlinearity and that �, A and q satisfy (1.2), (1.3) and (1.4), respec-
tively. Assume, furthermore, that ν · Aẽ = 0 on ∂� (in the case where ∂� 
= ∅). Then,
formula (1.17) implies formula (1.18).
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2 Main tools: change of variables and maximum principles

In this section, we introduce some tools that will be used in different places of this paper in
order to prove the main results.

Throughout this paper, ẽ will denote the vector in R
N defined by

ẽ = (e, 0, . . . , 0) = (e1, . . . , ed , 0, . . . , 0),

where e1, . . . , ed are the components of the vector e.
Our study is concerned with the model (1.14). Having a “combustion”, a “ZFK”, or a

“KPP” nonlinearity, together with the assumptions (1.3) and (1.4), problem (1.14) has at
least a classical solution (c, u) such that c > 0 and ut > 0 (see Theorems 1.5 and 1.6).
The function u is globally C1,µ(R ×�) and C2,µ with respect to (x, y) variables (for every
µ ∈ [0, 1)). It follows that ∇x,y .(A∇u) ∈ C(R × �). Having a unit direction e ∈ R

d , and
having a bounded classical solution (c, u) of (1.14) with c = c(e) (combustion case) or
c ≥ c∗(e) (ZFK or KPP case), we make the same change of variables as Xin [19]. Namely,
let φ = φ(s, x, y) be the function defined by

φ(s, x, y) = u

(
s − x · e

c
, x, y

)
for all s ∈ R and (x, y) ∈ �. (2.1)

Then, for all (s, x, y) ∈ R ×�,[∇x,y · (A∇x,yφ)+ (ẽAẽ)φss + ∇x,y · (Aẽφs)+ ∂s(ẽA∇x,yφ)
]
(s, x, y)

= ∇x,y · (A∇u)(t, x, y),

where s = x · e + ct. Consequently,

F[φ](s, x, y) = ∇x,y · (A∇x,yφ)+ (ẽAẽ)φss + ∇x,y · (Aẽφs)+ ∂s(ẽA∇x,yφ)

is defined at each point (s, x, y) ∈ R ×� and the map (s, x, y) �→ F[φ](s, x, y) belongs to
C(R ×�).

In all this paper, L = Lc will denote the operator acting on the set E (given in Theorem 1.8)
and which is defined by

Lϕ = ∇x,y · (A∇x,yϕ)+ (ẽAẽ)ϕss + ∇x,y · (Aẽϕs)+ ∂s(ẽA∇x,yϕ)

+ q · ∇x,yϕ + (q · ẽ − c)ϕs in C(R ×�)

= F[ϕ] + q · ∇x,yϕ + (q · ẽ − c)ϕs in C(R ×�), (2.2)

for all ϕ ∈ E .
It follows from above that if φ = φ(s, x, y) is a function that is given by a pulsating

travelling (c, u) solving (1.14) (under the change of variables (2.1)), then F[φ] ∈ C(R×�),
φ is globally bounded in C1,µ(R × �) (for every µ ∈ [0, 1)) and it satisfies the following
degenerate elliptic equation

Lφ(s, x, y)+ f (x, y, φ) = F[φ](s, x, y)+ q · ∇x,yφ(s, x, y)

+(q · ẽ − c)φs(s, x, y)+ f (x, y, φ) = 0 (2.3)

in R ×�, together with the boundary and periodicity conditions{
φ is L-periodic with respect to x,

ν · A(∇x,yφ + ẽφs) = 0 on R ×�.
(2.4)
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Moreover, since u(t, x, y) → 0 as x · e → −∞ and u(t, x, y) → 1 as x · e → +∞ locally
in t and uniformly in y and in the directions of R

d which are orthogonal to e, and since φ is
L-periodic with respect to x, the change of variables s = x · e + ct guarantees that

φ(−∞, ·, ·) = 0 and φ(+∞, ·, ·) = 1 uniformly in (x, y) ∈ �. (2.5)

Therefore, one can conclude that φ ∈ E .

Remark 2.1 It is now clear that a max-min formula of the type (1.16) can not hold for the min-
imal speed c∗(e) > 0 in the “ZFK” or the “KPP” case. Indeed, for each speed c ≥ c∗(e), there
is a solution (c, u) of (1.14) such that ut > 0, which gives birth to a function φ = φ(s, x, y)
under the change of variables (2.1). Owing to the above discussions the function φ ∈ E and
it satisfies

c = Rφ(s, x, y) for all (s, x, y) ∈ R ×�.

Therefore

sup
ϕ∈E

inf
(s,x,y)∈R×�

R ϕ(s, x, y) ≥ c.

Since one can choose any c ≥ c∗(e), one concludes that

sup
ϕ∈E

inf
(s,x,y)∈R×�

R ϕ(s, x, y) = +∞

in the “ZFK” or the “KPP” case.

Remark 2.2 (The same formulæ, but over a subset of E) If the restriction of the nonlin-
ear source f in (1.14) is C1,δ(� × [0, 1]), one can then conclude that (see the proof of
Proposition 6.3 in [1]) any solution u of (1.14) satisfies:

∀(t, x, y) ∈ R ×�, |∂t t u(t, x, y)| ≤ M ∂t u(t, x, y)

for some constant M independent of (t, x, y). In other words, the function

φ(s, x, y) = u((s − x · e)/c, x, y)

(where c = c(e) in the “combustion” case, and c = c∗(e) in the “ZFK” or the “KPP” case)
satisfies

∀(s, x, y) ∈ R ×�, |∂ssφ(s, x, y)| ≤ (M/c) ∂sφ(s, x, y).

Let E
′

be the functional subset of E defined by

E
′ = {

ϕ ∈ E, ∃C > 0, ∀ (s, x, y) ∈ R ×�, |∂ssϕ(s, x, y)| ≤ C ∂sϕ(s, x, y)
}
.

The previous facts together with the discussions at the beginning of this section imply that
the functions φ and φ∗ of Theorems 1.8 and 1.9 are elements of E

′ ⊂ E . These theo-
rems also yield that the max–min and the min–max formulæ can also hold over the subset
E

′
of E .
Namely, in the case of a “combustion” nonlinearity

c(e) = min
ϕ∈E ′ sup

(s,x,y)∈R×�
R ϕ(s, x, y) (2.6)

and

c(e) = max
ϕ∈E ′ inf

(s,x,y)∈R×�
R ϕ(s, x, y). (2.7)
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Moreover, the min and the max are attained at, and only at, the function φ(s, x, y) and its
shifts φ(s + τ, x, y) for any τ ∈ R.

On the other hand, only a min–max formula holds in the case of “ZFK” or “KPP” non-
linearities. That is

c∗(e) = min
ϕ∈E ′ sup

(s,x,y)∈R×�
R ϕ(s, x, y). (2.8)

Moreover, the min is attained at the function φ∗(s, x, y) and its shifts φ∗(s + τ, x, y) for any
τ ∈ R.

In the proofs of the variational formulæ which were given in Theorem 1.8 and Theo-
rem 1.9, we will use two versions of the maximum principle in unbounded domains for some
problems related to (2.2)–(2.4) and (2.5). Such generalized maximum principles were proved
in Berestycki and Hamel [1] in a slightly more general framework:

Lemma 2.3 [1] Let e be a fixed unit vector in R
d . Let g(x, y, u) be a globally bounded and

globally Lipschitz-continuous function defined in�×R and assume that g is non-increasing
with respect to u in �× (−∞, δ] for some δ > 0. Let h ∈ R and �−

h := (−∞, h)×�. Let

c 
= 0 and φ1(s, x, y), φ2(s, x, y) be two bounded and globally C1,µ(�−
h ) functions (for

some µ > 0) such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lφ1 + g(x, y, φ1) ≥ 0 in D′(�−
h ),

Lφ2 + g(x, y, φ2) ≤ 0 in D′(�−
h ),

ν · A
[
ẽ(φ1

s − φ2
s )+ ∇x,y(φ

1 − φ2)
] ≤ 0 on (−∞, h] × ∂�,

lims0→−∞ sup{s≤s0, (x,y)∈�} [φ1(s, x, y)− φ2(s, x, y)] ≤ 0,

(2.9)

where

Lφ := ∇x,y · (A∇x,yφ)+ (ẽAẽ)φss + ∇x,y · (Aẽφs)+ ∂s(ẽA∇x,yφ)

+ q · ∇x,yφ + (q · ẽ − c)φs, (2.10)

and ẽ denotes the vector (e, 0, . . . , 0) ∈ R
N .

If φ1 ≤ δ in �−
h and φ1(h, x, y) ≤ φ2(h, x, y) for all (x, y) ∈ �, then

φ1 ≤ φ2 in �−
h .

Remark 2.4 Note here that φ1, φ2, q, A and g are not assumed to be L-periodic in x and that
q is not assumed to satisfy (1.4).

Changing φ1(s, x, y), φ2(s, x, y) and g(x, y, s) into 1 −φ1(−s, x, y), 1 −φ2(−s, x, y)
and −g(x, y, 1 − s) respectively in Lemma 2.3 leads to the following

Lemma 2.5 [1] Let e be a fixed unit vector in R
d . Let g(x, y, u) be a globally bounded and

globally Lipschitz-continuous function defined in�×R and assume that g is non-increasing
with respect to u in �× [1 − δ,+∞) for some δ > 0. Let h ∈ R and �+

h := (h,+∞)×�.

Let c 
= 0 and φ1(s, x, y), φ2(s, x, y) be two bounded and globally C1,µ(�+
h ) functions
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(for some µ > 0) such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Lφ1 + g(x, y, φ1) ≥ 0 in D′(�+
h ),

Lφ2 + g(x, y, φ2) ≤ 0 in D′(�+
h ),

ν · A
[
ẽ(φ1

s − φ2
s )+ ∇x,y(φ

1 − φ2)
] ≤ 0 on [h,+∞)× ∂�,

lims0→+∞ sup{s≥s0, (x,y)∈�} [φ1(s, x, y)− φ2(s, x, y)] ≤ 0,

(2.11)

where L is the same operator as in Lemma 2.3.

If φ2 ≥ 1 − δ in �+
h and φ1(h, x, y) ≤ φ2(h, x, y) for all (x, y) ∈ �, then

φ1 ≤ φ2 in �+
h .

3 Case of a “combustion” nonlinearity

This section is devoted to prove Theorem 1.8, where the nonlinearity f satisfies the assump-
tions (1.5), (1.6) and (1.7).

3.1 Proof of formula (1.15)

Having a prefixed unit direction e ∈ R
d , and since the coefficients A and q of problem (1.14)

satisfy the assumptions (1.3) and (1.4), it follows, from Theorem 1.5, that there exists a unique
pulsating travelling front (c(e), u) (u is unique up to a translation in the time variable) which
solves problem (1.14). Moreover, ∂t u > 0 in R × �. We will complete the proof of (1.15)
via two steps.

Step 1. After the discussions done in the Sect. 2, the existence of a classical solution
(c(e), u), satisfying (1.14), implies the existence of a globally C1(R×�) function φ(s, x, y)
satisfying 0 ≤ φ ≤ 1 in R ×�, with⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ is L-periodic with respect to x,

Lφ(s, x, y)+ f (x, y, φ) = 0 in D′(R ×�),

ν · A(∇x,yφ + ẽφs) = 0 in R × ∂�,

φ(−∞, ·, ·) = 0, and φ(+∞, ·, ·) = 1 uniformly in (x, y) ∈ �,

(3.1)

where L is the operator defined in (2.2) for c = c(e).We also recall that the two functions u
and φ satisfy the relation

u(t, x, y) = φ(x · e + c(e)t, x, y), (t, x, y) ∈ R ×�.

One has ∂sφ > 0 in R × � and this is equivalent to say that the function u = u(t, x, y) is
increasing in t, since c(e) > 0.

Together with the facts in Sect. 2.1, one gets that the function φ ∈ E . Furthermore, (3.1)
yields that

∀ s ∈ R, ∀(x, y) ∈ �, c(e) = R φ(s, x, y), (3.2)

and

Lφ(s, x, y)+ f (x, y, φ) = 0, (3.3)
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where Rφ is the function defined in Theorem 1.8. In other words, the L-periodic (with respect
to x) function Rφ is constant over R ×� and it is equal to c(e).

It follows, from (3.2) and from the above explanations, that

c(e) ≥ inf
ϕ∈E

sup
(s,x,y)∈R×�

Rϕ(s, x, y).

To complete the proof of formula (1.15), we assume that

c(e) > inf
ϕ∈E

sup
(s,x,y)∈R×�

Rϕ(s, x, y).

Then, there exists a function ψ = ψ(s, x, y) ∈ E such that

c(e) > sup
(s,x,y)∈R×�

Rψ (s, x, y).

Since the functionψ ∈ E, one then hasψs(s, x, y) > 0 for all (s, x, y) ∈ R×�. This yields
that

Lψ(s, x, y)+ f (x, y, ψ) < 0 in R ×�, (3.4)

where L is the operator defined in (2.2) for c = c(e).
Notice that the later holds for each function of the type

ψτ (s, x, y) := ψ(s + τ, x, y)

because of the invariance of (3.4) with respect to s and because the advection field q and the
diffusion matrix A depend on the variables (x, y) only. That is

Lψτ (s, x, y)+ f (x, y, ψτ ) < 0 in R ×�. (3.5)

Step 2. In order to draw a contradiction, we are going to slide the function ψ with respect
to φ. From the limiting conditions satisfied by these two functions, there exists a real number
B > 0 such that {

φ(s, x, y) ≤ θ for all s ≤ −B, (x, y) ∈ �,
ψ(s, x, y) ≥ 1 − ρ for all s ≥ B, (x, y) ∈ �,

and

φ(B, x, y) ≥ 1 − ρ for all (x, y) ∈ �, (3.6)

where θ and ρ are the values that appear in the conditions (1.7) satisfied by the “combustion”
nonlinearity f. Taking τ ≥ 2B, and since ψ is increasing with respect to s, one gets that

φ(−B, x, y) ≤ ψτ (−B, x, y) for all (x, y) ∈ � and ψτ ≥ 1 − ρ in �+
−B .

It follows from Lemma 2.3 (take δ = θ, h = −B, φ1 = φ, and φ2 = ψτ ) that φ ≤ ψτ

in�−
−B .Moreover, Lemma 2.5 (take δ = ρ, h = −B, φ1 = φ, and φ2 = ψτ ) implies that

φ ≤ ψτ in �+
−B . Consequently, φ ≤ ψτ in R ×� for all τ ≥ 2B.

Let us now decrease τ and set

τ ∗ = inf
{
τ ∈ R, φ ≤ ψτ in R ×�

}
.

First one notes that τ ∗ ≤ 2B. On the other hand, the limiting conditions ψ(−∞, ·, ·) = 0
and φ(+∞, ·, ·) = 1 imply that τ ∗ is finite. By continuity, φ ≤ ψτ

∗
in R × �. Two cases

may occur according to the value of sup[−B,B]×�(φ − ψτ
∗
).
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Case 1: Suppose that

sup
[−B,B]×�

(φ − ψτ
∗
) < 0.

Since the functions ψ and φ are globally C1(R ×�) there exists η > 0 such that the above
inequality holds for all τ ∈ [τ ∗ − η, τ ∗]. Choosing any τ in the interval [τ ∗ − η, τ ∗], and
applying Lemma 2.3 to the functions ψτ and φ, one gets that

φ(s, x, y) ≤ ψτ (s, x, y) for all s ≤ −B, (x, y) ∈ �,
together with the inequality

φ(s, x, y) < ψτ (s, x, y) for all s ∈ [−B, B], and for all (x, y) ∈ �.
Owing to (3.6) and to the above inequality, it follows that

ψτ (B, x, y) ≥ 1 − ρ in �.

Moreover, since the functionψ is increasing in s, one gets thatψτ ≥ 1−ρ in�+
B .Lemma 2.5,

applied to φ and ψτ in �+
B , yields that

φ(s, x, y) ≤ ψτ (s, x, y) for all s ≥ B, (x, y) ∈ �.
As a consequence, one obtains φ ≤ ψτ in R ×�, and that contradicts the minimality of τ ∗.
Therefore, case 1 is ruled out.

Case 2: Suppose that

sup
[−B,B]×�

(
φ − ψτ

∗) = 0.

Then, there exists a sequence of points (sn, xn, yn) in [−B, B] ×� such that

φ(sn, xn, yn)− ψτ (sn, xn, yn) → 0 as n → +∞.

Due to the L-periodicity of the functions φ andψ, one can assume that (xn, yn) ∈ C . Conse-
quently, one can assume, up to extraction of a subsequence, that (sn, xn, yn) → (s̄, x̄, ȳ) ∈
[−B, B] × C as n → +∞. By continuity, one gets φ(s̄, x̄, ȳ) = ψτ

∗
(s̄, x̄, ȳ).

We return now to the variables (t, x, y). Let

z(t, x, y) = φ(x · e + c(e) t, x, y)− ψ(x · e + c(e) t + τ ∗, x, y)

= u(t, x, y)− ψ(x · e + c(e) t + τ ∗, x, y) for all (t, x, y) ∈ R ×�.

Since the functions φ and ψ are in E, it follows that the function z is globally C1(R × �)

and it satisfies

∀ (t, x, y) ∈ R ×�, ∇x,y · (A∇z)(t, x, y) = F[φ](s, x, y)− F[ψτ∗ ](s, x, y),

where s = x · e + c(e)t. Thus, ∇x,y · (A∇z) ∈ C(R ×�). Moreover, the function z is non
positive and it vanishes at the point ((s̄ − x̄ ·e)/c(e), x̄, ȳ). It satisfies the boundary condition
ν · (A∇z) = 0 on R × ∂�. Furthermore, it follows, from (3.2) and (3.4), that

∂t z − ∇x,y · (A∇z)+ q(x, y) · ∇x,y z ≤ f (x, y, φ)− f (x, y, ψτ
∗
).

However, the function f is globally Lipschitz-continuous in � × R; hence, there exists a
bounded function b(t, x, y) such that
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∂t z − ∇x,y · (A∇z)+ q(x, y) · ∇x,y z + b(t, x, y) z ≤ 0 in R ×�,

with z(t, x, y) ≤ 0 for all (t, x, y) ∈ R ×�.

Applying the strong parabolic maximum principle and Hopf lemma, one gets that
z(t, x, y) = 0 for all t ≤ (s̄ − x̄ · e)/c(e) and for all (x, y) ∈ �. On the other hand, it
follows from the definition of z and from the L-periodicity of the functions φ and ψ that
z(t, x, y) = 0 for all (t, x, y) ∈ R ×�. Consequently,

φ(s, x, y) = ψτ
∗
(s, x, y) = ψ(s + τ ∗, x, y) for all (s, x, y) ∈ R ×�.

Referring to Eqs. (3.3) and (3.5), one gets a contradiction. Thus, case 2 is ruled out too,
and that completes the proof of the formula (1.15).

Remark 3.1 (The uniqueness, up to a shift, of the minimizer in (1.15)) If ψ ∈ E is a min-
imizer in (1.15). The above arguments imply that case 2 necessarily occurs, and that ψ is
equal to a shift of φ. In other words, the minimum in (1.15) is realized by and only by the
shifts of φ.

3.2 Proof of formula (1.16)

In this subsection, we are going to prove the “max–min” formula of the speed of propagation
c(e)whenever the nonlinearity f is of the “combustion” type. The tools and techniques which
one uses here are similar to those used in the previous subsection. However, we are going to
sketch the proof of formula (1.16) for the sake of completeness.

As it was justified in the previous subsection, one easily gets that

c(e) ≤ sup
ϕ∈E

inf
(s,x,y)∈R×�

Rϕ(s, x, y)

and

∀ (s, x, y) ∈ R ×�, c(e) = Rφ(s, x, y),

where

φ(s, x, y) = u ((s − x · e)/c(e), x, y) , for all (s, x, y) ∈ R ×�,

and u = u(t, x, y) is the unique (up to a translation in t) pulsating travelling front solving
problem (1.14) and propagating in the speed c(e). We recall that the function φ ∈ E (see
Sect. 2). It follows that the function φ satisfies the following⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

φ is L-periodic with respect to x,

φ is increasing in s ∈ R,

Lφ(s, x, y)+ f (x, y, φ) = 0 in R ×�,

ν · A(∇x,yφ + ẽφs) = 0 in R × ∂�,

φ(−∞, ·, ·) = 0, and φ(+∞, ·, ·) = 1 uniformly in (x, y) ∈ �,

(3.7)

where L is the operator defined in (2.2) for c = c(e).
Notice that the later holds also for each function of the type

φτ (s, x, y) := φ(s + τ, x, y)

because of the invariance of (3.8) with respect to s and because the advection field q and the
diffusion matrix A depend on the variables (x, y) only.
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To complete the proof of formula (1.16), we assume that

c(e) < sup
ϕ∈E

inf
(s,x,y)∈R×�

Rϕ(s, x, y).

Hence, there exists ψ ∈ E such that

c(e) < Rψ (s, x, y), for all (s, x, y) ∈ R ×�.

Since the functionψ ∈ E, one then hasψs(s, x, y) > 0 for all (s, x, y) ∈ R×�. This yields
that

Lψ(s, x, y)+ f (x, y, ψ) > 0 in R ×�. (3.8)

To get a contradiction, we are going to slide the function φ with respect to ψ. In fact, the
limiting conditions satisfied by ψ and φ, which are elements of E, yield that there exists a
real positive number B such that{

ψ(s, x, y) ≤ θ for all s ≤ −B, (x, y) ∈ �,
φ(s, x, y) ≥ 1 − ρ for all s ≥ B, (x, y) ∈ �,

and

ψ(B, x, y) ≥ 1 − ρ for all (x, y) ∈ �, (3.9)

where θ and ρ are the values appearing in the conditions (1.7) satisfied by the nonlinearity f.
Having τ ≥ 2B, one applies Lemma 2.3 (taking δ = θ, h = −B, φ1 = ψ, and φ2 = φτ )
and Lemma 2.5 (taking δ = ρ, h = −B, φ1 = ψ , and φ2 = φτ ) to the functions φτ and
ψ, over the domains �−

−B and �+
−B respectively, to get that ψ ≤ φτ in �−

−B and ψ ≤ φτ in
�+

−B . Consequently, one can conclude that

∀τ ≥ 2B, ψ ≤ φτ in R ×�.

Let us now decrease τ and set

τ ∗ = inf
{
τ ∈ R, ψ ≤ φτ in R ×�

}
.

It follows, from the limiting conditions ψ(+∞, ·, ·) = 1 and φ(−∞, ·, ·) = 0, that τ ∗ is
finite. By continuity, we have ψ ≤ φτ

∗
. In this situation, two cases may occur. Namely,

case A: sup
[−B,B]×�

(ψ − φτ
∗
) < 0,

or

case B: sup
[−B,B]×�

(ψ − φτ
∗
) = 0.

Imitating the ideas and the skills used in case 1 and case 2 during the proof of formula (1.15),
one gets that case A (owing to minimality of τ ∗) and case B (owing to (3.7) and (3.8)) are
ruled out.

Therefore, the assumption that

c(e) < sup
ϕ∈E

inf
(s,x,y)∈R×�

Rϕ(s, x, y)

is false, and that completes the proof of formula (1.16).
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Remark 3.2 (The uniqueness, up to a shift, of the maximizer in (1.16)) Similar to what we
have already mentioned in Remark 3.1, if ψ ∈ E is a maximizer in (1.16), then the above
arguments yield that case B necessarily occurs, and that ψ is equal to a shift of φ. One then
concludes that the maximum in (1.16) is realized by, and only by, the shifts of φ.

4 Case of “ZFK” or “KPP” nonlinearities: proof of formula (1.17)

This section is devoted to the proof of Theorem 1.9. We assume that the nonlinear source f is
of “ZFK” type. Remember that this case includes the class of “KPP” nonlinearities. Namely,
f = f (x, y, u) is a nonlinearity satisfying (1.5), (1.6) and (1.8). We will divide the proof of
formula (1.17) into three steps:

Step 1. Under the assumptions (1.2), (1.3), and (1.4) on the domain �, the diffusion
matrix A, and the advection field q respectively, and having a nonlinearity f satisfying the
above assumptions, Theorem 1.6 yields that for c = c∗

�,A,q, f (e), there exists a solution
u∗ = u∗(t, x, y) of (1.14) such that u∗

t (t, x, y) > 0 for all (t, x, y) ∈ R×�. In other words,
the function φ∗ defined by

φ∗(s, x, y) = u∗
(

s − x · e

c∗(e)
, x, y

)
, (s, x, y) ∈ R ×�

is increasing in s ∈ R. Owing to Sect. 2, φ∗ satisfies

F[φ∗] + q · ∇x,yφ
∗ + (q · ẽ − c∗(e))φ∗

s ,+ f (x, y, φ∗) = 0 in R ×� (4.1)

together with boundary and periodicity conditions{
φ∗ is L-periodic with respect to x,

ν · A(∇x,yφ
∗ + ẽφ∗

s ) = 0 on R ×�.
(4.2)

Moreover, (4.1) implies that

∀ (s, x, y) ∈ R ×�,

c∗(e) = F[φ∗](s, x, y)+ q · ∇x,yφ
∗(s, x, y)+ f (x, y, φ∗)

∂sφ∗(s, x, y)
+ q(x, y) · ẽ

= Rφ∗(s, x, y), (4.3)

and hence

c∗(e) ≥ inf
ϕ∈E

sup
(s,x,y)∈R×�

F[ϕ](s, x, y)+ q · ∇x,yϕ + f (x, y, ϕ)

∂sφ(s, x, y)
+ q(x, y) · ẽ.

In order to prove equality, we argue by contradiction. Assuming that the above inequality
is strict, one can find δ > 0 such that

c∗(e)− δ > inf
ϕ∈E

sup
(s,x,y)∈R×�

F[ϕ](s, x, y)+ q · ∇x,yϕ + f (x, y, ϕ)

∂sϕ(s, x, y)
+ q(x, y) · ẽ.

(4.4)

To draw a contradiction, we are going to approach the “ZFK” nonlinearity f by a sequence
of “combustion” nonlinearities ( fθ )θ and the minimal speed of propagation by the sequence
of speeds (cθ )θ corresponding to the functions ( fθ )θ . The details will appear in the next step.
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Step 2. Let χ be a C1(R) function such that 0 ≤ χ ≤ 1 in R, χ(u) = 0 for all
u ≤ 1, 0 < χ(u) < 1 for all u ∈ (1, 2) and χ(u) = 1 for all u ≥ 2. Assume more-
over that χ is non-decreasing in R. For all θ ∈ (0, 1/2), let χθ be the function defined
by

∀u ∈ R, χθ (u) = χ(u/θ).

The function χθ is such that 0 ≤ χθ ≤ 1, 0 < χθ < 1 in (−∞, θ ], 0 < χθ < 1 in (θ, 2θ) and
χθ = 1 in [2θ,+∞). Furthermore, the functions χθ are non-increasing with respect to θ,
namely, χθ1 ≥ χθ2 if 0 < θ1 ≤ θ2 < 1/2.

We set

fθ (x, y, u) = f (x, y, u) χθ (u) for all (x, y, u) ∈ �× R.

In other words, we cut off the source term f near u = 0.
For each θ ∈ (0, 1/2), the function fθ is a nonlinearity of “combustion” type that satisfies

(1.5), (1.6) and (1.7) with the ignition temperature θ. Therefore, Theorem 1.5 yields that the
existence of a classical solution (cθ , uθ ) of (1.14) with the nonlinearity fθ . Furthermore, the
function uθ is increasing in t and unique up to translation in t and the speed cθ is unique and
positive.

It was proved, through Lemma 6.1 and Lemma 6.2 in Berestycki and Hamel [1], that the
speeds cθ are non-increasing with respect to θ and

cθ ↗ c∗(e) as θ ↘ 0.

Consider a sequence θn ↘ 0. Then, there exists n0 ∈ N such that cθn ≥ c∗(e) − δ for all
n ≥ n0 (or equivalently θn ≤ θn0 ).

In what follows, we fix θ such that θ < θn0 . One consequently gets cθ ≥ c∗(e) − δ. On
the other hand, it follows, from the construction of fθ , that f ≥ fθ in �× R. Together with
(4.4), one obtains

cθ > inf
ϕ∈E

sup
(s,x,y)∈R×�

F[ϕ](s, x, y)+ q · ∇x,yϕ + fθ (x, y, ϕ)

∂sϕ(s, x, y)
+ q · ẽ. (4.5)

Thus, there exists a function ψ ∈ E such that

cθ >
F[ψ](s, x, y)+ q · ∇x,yψ(s, x, y)+ fθ (x, y, ψ)

∂sψ(s, x, y)
+ q(x, y) · ẽ. (4.6)

However,ψs(s, x, y) > 0 for all (s, x, y) ∈ R×�.Thus, the inequality (4.6) can be rewritten
as

Lψ(s, x, y)+ fθ (x, y, ψ) < 0 in R ×�, (4.7)

with ψ ∈ E and L is the operator defined in (2.2) for c = cθ .
For each τ ∈ R, we define the function ψτ by

ψτ (s, x, y) = ψ(s + τ, x, y) for all (s, x, y) ∈ R ×�.

Since the coefficients of L are independent of s, the later inequality also holds for all functions
ψτ with τ ∈ R. That is,

Lψτ (s, x, y)+ fθ (x, y, ψτ ) < 0 in R ×�. (4.8)

123



64 M. I. El Smaily

Step 3. For the fixed θ (in step 2), the function fθ is a “combustion” nonlinearity whose
ignition temperature is θ.There corresponds a solution (cθ , uθ ) of (1.14) within the nonlinear
source fθ . We define φθ by

φθ (s, x, y) = uθ

(
s − x · e

cθ
, x, y

)
, for all (s, x, y) ∈ R ×�.

Referring to Sect. 2, one knows that φθ ∈ E and thus it satisfies the following equation

Lφθ (s, x, y)+ fθ (x, y, φθ ) = 0 in R ×�. (4.9)

Now, the situation is exactly the same as that in step 2 of the proof of formula (1.15) because
the nonlinearity fθ is of “combustion” type. The little difference is that f (in step 2 of the
proof of formula (1.15)) is replaced here by fθ , and the function φ of equation (3.3) is
replaced by the function φθ of (4.9). Thus, following the arguments of subsection 3.1 and
using the same tools of “step 2” as in the proof of formula (1.15), one gets that the (4.4) is
impossible and that completes the proof of formula (1.17). ��
Remark 4.1 We found that one can use another argument (details are below) different from
the sliding method in order to prove the min–max formulæ for the speeds of propagation
whenever f is a homogenous (i.e f = f (u)) nonlinearity of “combustion” or “ZFK” type
and � = R

N . Meanwhile, the sliding method, that we used in the proofs of formulæ (1.15)
and (1.17), is a unified argument that works in the general heterogenous periodic framework.

Another proof of formulæ (1.15) and (1.17) in a particular framework. Here, we assume that
f = f (u), and � = R

N . Following the same procedure of “step 1” in the previous proof,
one gets the inequality

c∗(e) ≥ inf
ϕ∈E

sup
(s,x,y)∈R×�

Rϕ(s, x, y).

Now, to prove the other sense of inequality, we assume that

c∗(e) > inf
ϕ∈E

sup
(s,x,y)∈R×�

Rϕ(s, x, y),

and we assume that f is of “ZFK” type.1 Then, as it was explained in “step 2” of the previous
proof, one can find ψ ∈ E, δ > 0, θ > 0, and d > 0 such that

c∗(e)− δ < d < cθ < c∗(e)

where

∀(s, x, y) ∈ R ×�, d > c∗(e)− δ > Rψ(s, x, y),

and fθ (u) = f (u) χθ (u) ≤ f (u) for all u ∈ R is of “combustion” type (cθ is the speed
of propagation, in the direction of −e, of pulsating travelling fronts solving (1.14) with the
nonlinearity fθ and the domain � = R

N ).
Hence, for all (t, x, y) ∈ R × R

N ,

d >
F[ψ](s, x, y)+ q · ∇x,yψ(s, x, y)+ fθ (ψ)

∂sψ(s, x, y)
+ q(x, y) · ẽ. (4.10)

1 The case where f is of “combustion” type follows in a similar way.
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Let ũ(t, x, y) = ψ(x · e + dt, x, y). As it was explained in Sect. 2, the function ũ satisfies⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ũt − ∇ · (A(x, y)∇ũ)− q(x, y) · ∇ũ − fθ (ũ) > 0, t ∈ R, (x, y) ∈ �,
ν · A ∇ũ(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂�,
∀ k ∈ ∏d

i=1 Li Z, ∀ (t, x, y) ∈ R ×�, ũ(t + k·e
d , x, y) = ũ(t, x + k, y),

0 ≤ ũ ≤ 1.

(4.11)

Let 0 ≤ u0(x, y) ≤ 1 be a function in C(RN ) such that u0(x, y) → 0 as x ·e → −∞, and
u0(x, y) → 1 as x · e → +∞, uniformly in y and all directions of R

d which are orthogonal
to e. Let u be a pulsating front propagating in the direction of −e with the speed cθ and
solving the initial data problem⎧⎪⎨

⎪⎩
ut = ∇ · (A(x, y)∇u)+ q(x, y) · ∇u + fθ (u), t > 0, (x, y) ∈ �,
u(0, x, y) = u0(x, y),

ν · A ∇u(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂�.
(4.12)

Having fθ (u) as a “combustion” nonlinearity, it follows from Xin [18, Theorem 3.5] and
Weinberger [17], that

∀r > 0, lim
t→+∞ sup

|x |≤r
u(t, x − cte, y) = 0 uniformly in y, for every c > cθ ,

and lim
t→+∞ inf|x |≤r

u(t, x − cte, y) = 1 uniformly in y, for every c < cθ . (4.13)

This means that the speed of propagation cθ corresponding to (1.14) is equal to the spread-
ing speed in the direction of −e when the nonlinearity is of “combustion” type and the initial
data u0 satisfies the above conditions.

For all (t, x, y) ∈ [0,+∞)×�, let w(t, x, y) = ũ(t, x, y)− u(t, x, y). It follows, from
(4.11) and (4.12), that⎧⎪⎨

⎪⎩
wt − ∇ · (A(x, y)∇w)− q(x, y) · ∇w + bw > 0, t > 0, (x, y) ∈ �,
∀(x, y) ∈ �, w(0, x, y) ≥ 0,

ν · A ∇w(t, x, y) = 0, t ∈ R, (x, y) ∈ ∂�,
(4.14)

for some b = b(t, x, y) ∈ C(R ×�). The parabolic maximum principle implies that w ≥ 0
in [0,+∞)×�. In other words,

∀(t, x, y) ∈ [0,+∞)×�, u(t, x, y) ≤ ũ(t, x, y).

However, for all c > d,

lim
t→+∞ ũ(t, x − cte, y) = lim

t→+∞ψ(x · e + (d − c)t, x − cte, y) = 0

locally in x and uniformly in y (since ψ ∈ E). Consequently,

∀c > d, ∀r > 0, lim
t→+∞ sup

|x |≤r
u(t, x − cte, y) = 0 uniformly in y.

Referring to (4.13), one concludes that d ≥ cθ which is impossible (d < cθ ). Therefore, our
assumption that c∗(e) > infϕ∈E sup(s,x,y)∈R×� Rϕ(s, x, y) is false and that completes the

proof of formula (1.17) in the case where f = f (u) and � = R
N . ��
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