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a b s t r a c t

We consider a reaction–diffusion model with a drift term in a bounded domain.
Given a time T, we prove the existence and uniqueness of an initial datum that
maximizes the total mass

∫
Ω

u(T, x)dx in the presence of an advection term. In
a population dynamics context, this optimal initial datum can be understood as
the best distribution of the initial population that leads to a maximal the total
population at a prefixed time T. We also compare the total masses at a time T in
two cases: depending on whether an advection term is present in the medium or
not. We prove that the presence of a large enough advection enhances the total
mass.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction and main results

In this paper, we study an optimization problem associated with a reaction–diffusion model that involves
an advection term. The model reads⎧⎪⎨⎪⎩

∂tu − σ∆u − q · ∇xu = f(u) in (0, T ) × Ω ,

u(0, x) = u0(x) in Ω ,
∂u
∂ν (t, x) = 0, for all t ∈ (0, T ) and x ∈ ∂Ω ,

(1)

here Ω is a bounded, connected and smooth domain of RN , σ > 0 is a positive constant (standing for the
iffusivity of the medium) and ν(x) is the outward unit normal to ∂Ω at a point x.
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Model (1) appears in studies related to population dynamics, chemical reactions (see [1,11] for e.g.) and
mixing processes (see [2] and the references therein). The function u = u(t, x) then stands for the evolving
ensity at a time t and a location x ∈ Ω . Our present work aims to answer natural questions related to
he maximization of the total mass

∫
Ω

u(T, x) dx at a given time T > 0. More precisely, at a prefixed time
> 0, our goal is to maximize the functional

IT (u0) :=
∫
Ω

u(T, x) dx (2)

mong all possible initial data u0 ∈ Am, where

Am :=
{

u0 ∈ A,

∫
Ω

u0 = m

}
, A :=

{
u0 ∈ L1(Ω), 0 ≤ u0 ≤ 1

}
, (3)

nd u(t, x) is the solution of (1) with an initial datum u(0, ·) = u0(·).
In (1), when u represents the density of a population, the quantity

∫
Ω

u(t, x) dx is the total population
t a given time t. In a population dynamics context, our first problem can then be phrased as follows:

Given an initial total population m, we investigate whether there is an optimal distribution of individ-
uals, at the initial time, that makes the total population at a time T maximal. Moreover, if such an
optimal initial datum exists, we seek answers related to its uniqueness.

he answers to these questions are given in the first two theorems of this paper.

ypotheses. Let us state the assumptions we need on the terms q and f appearing in (1). Again, Ω is a
ounded, connected and smooth domain of RN . The reaction term f satisfies the following assumptions:⎧⎪⎪⎨⎪⎪⎩

f ∈ C1(R),

∃M > 0, such that sups∈[0,1] |f ′(s)| ≤ M,

f(0) = f(1) = 0.

(4)

he underlying advection q(x) = (q1(x), . . . , qN (x)) is a vector field that satisfies

q ∈ C1,δ(Ω) for some δ > 0, and q · ν = 0 on ∂Ω . (5)

n the regularity of solutions. The fact that 0 ≤ u0 ≤ 1 and Ω is bounded imply that u0 ∈ Lp for any
≥ 1. Since q ∈ C1,δ(Ω), and f ∈ C1 it follows that the solution u is C2,α (for some 0 < α < 1) in the

pace variable, and C1 in t (see Chapter 4 – Friedman [6] and Wang [14]).
Under the above assumptions, problem (1) has a unique solution u(t, x), such that

0 ≤ u(t, x) ≤ 1, for all (t, x) ∈ [0, T ] × Ω . (6)

e explain (6) as follows. Since 0 ≤ u0(x) ≤ 1 and f(0) = f(1) = 0, it follows that Ū = 1 is a supersolution
of (1) and U = 0 is a subsolution of (1). An application of the maximum principle allows us to conclude
that 0 ≤ u ≤ 1.

The fact that 0 ≤ u(t, x) ≤ 1, for all (t, x) ∈ [0, T ] ×Ω implies that the operator IT : A → R, defined by

IT (u0) =
∫
Ω

u(T, x) dx,

here u is the solution of Eq. (1) assumes finite values, whenever the argument u0 belongs to the family A.
ote that u0 plays the role of an initial value for (1), which leads to the integrand of our functional IT .
Our first result answers the question about the existence of a maximizer.
2
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Theorem 1 (Existence of an Optimal Initial Datum). Let Ω be a bounded domain and let f and q satisfy the
ssumptions stated in (4) and (5) respectively. Then, there exists ū0 ∈ Am such that

max
u0∈Am

IT (u0) = IT (ū0).

The following result confirms the uniqueness of the optimal initial datum.

heorem 2 (Uniqueness of the Optimal Initial Datum). Suppose that f and q satisfy the assumptions (4) and
5) respectively. Furthermore, assume that f is strictly concave. Then, the optimal initial datum ū0, obtained
n Theorem 1, is unique.

Remark 1. We highlight the importance of the assumption that f is concave in order to obtain the
niqueness of a maximizer we have in Theorem 1. Indeed, the recent result by Mazari, Nadin and Marrero [10]
hows the existence of a non-unique maximizer when f is convex. Remark 2 of [10] mentions at least two
aximizers, whenever f is convex.

Theorems 1 and 2 answer the first question posed in the introduction.

nfluence of advection on the maximal total mass. Another natural question is

whether the presence of an advection term influences the value of the optimal mass
∫
Ω

u(T, x) dx or not.
Our second goal is to compare the optimal total mass in the case where an advection is present to the
optimal total mass in the case where no advection is considered in the model. Does the addition of an
advection to the medium enhance the total mass at a time T?

he above question is addressed in the following theorem. Under an additional assumption on the divergence
f the advection field, the next theorem shows that the total mass at time T in model (9) is larger than the
aximal total mass in model (10), even when the reaction–diffusion equation in (10) has an optimal initial
atum. We will see in the proof that this is mainly because (9) has an advection term, while model (10)
oes not.

heorem 3 (Enhancement of the Total Mass by Advection). We assume that f and q satisfy (4) and (5)
espectively. Moreover, we assume that

α := max
x∈Ω

∇ · q(x) < 0 (7)

nd
f(s) ≥ 0, for all s ∈ [0, 1]. (8)

or U0
A ∈ Am, let IA

T (U0) =
∫
Ω

UA(T, x) dx, where UA is the solution of⎧⎪⎨⎪⎩
∂tUA − σ∆UA − Aq(x) · ∇xUA = f(UA) in (0, T ) × Ω

UA(0, x) = U0(x) in Ω ,
∂UA
∂ν (t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω .

(9)

et IT (V0) =
∫
Ω

V (t, x) dx, where V is the solution of⎧⎪⎪⎨⎪⎪⎩
∂tV − σ∆V = f(V ) in (0, T ) × Ω ,

V (0, x) = V0(x) in Ω ,

∂V

(10)
∂ν (t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω .

3
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A ≥ −M |Ω |

mα
> 0, (11)

e then have
inf

u0∈Am
IA

T (u0) ≥ max
V0∈Am

IT (V0). (12)

Theorem 3 shows that a large enough advection makes the total mass of (9) larger than the optimal mass
f (10) that can be obtained with an optimal distribution of the initial population.

eneralization to more heterogeneous settings

The results above can be generalized to more heterogeneous settings, where the diffusivity and reaction is
pace/space–time dependent. More precisely, we can generalize the previous results to a model of the form⎧⎪⎨⎪⎩

∂tu − ∇ · (D(x)∇u) − q · ∇xu = f(t, x, u) in (0, T ) × Ω ,

u(0, x) = u0(x) in Ω ,

ν · D(x)∇u(t, x) = 0, t ∈ (0, T ) and x ∈ ∂Ω ,

(13)

here D(x) = (Dij(x))1≤i, j≤n denotes a C2(Ω) matrix, such that

∃θ > 0, ∀ξ ∈ Rn, ξ · D(x)ξ ≥ θ|ξ|2. (14)

he advection q satisfies (5). The reaction term f in the generalized model (13) is a function satisfying⎧⎪⎪⎨⎪⎪⎩
f ∈ C1((0, T ) × Ω × R),

∃M > 0, such that sup(t,x,u)∈(0,T )×Ω×[0,1]

⏐⏐⏐ ∂f
∂u (t, x, u)

⏐⏐⏐ ≤ M,

∀(t, x) ∈ (0, T ) × Ω , f(t, x, 0) = f(t, x, 1) = 0.

(15)

As above, we denote by
IT (u0) :=

∫
Ω

u(T, x)dx.

he following results are the generalizations of Theorems 1–3 to model (13).

heorem 4 (Existence of an Optimal Initial Datum). Let Ω be a bounded smooth domain and assume that
, D(x) and f satisfy the assumptions stated in (5), (14) and (15) respectively. Then, there exists ū0 ∈ Am

uch that
max

u0∈Am
IT (u0) = IT (ū0).

heorem 5 (Uniqueness of the Optimal Initial Datum). Suppose that q, D(x) and f satisfy the assumptions
tated in (5), (14) and (15) respectively. Furthermore, assume that f is strictly concave. Then, the optimal
nitial datum ū0, obtained in Theorem 4, is unique.

heorem 6 (Enhancement of the Total Mass by Advection). We assume that q, D(x) and f satisfy the
ssumptions stated in (5), (14) and (15). Moreover, we assume that

α := max
x∈Ω

∇ · q(x) < 0 (16)

nd
f(t, x, s) ≥ 0, for all (t, x, s) ∈ (0, T ) × Ω × [0, 1]. (17)
4
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For U0
A ∈ Am, let IA

T (U0) =
∫
Ω

UA(T, x) dx, where UA is the solution of⎧⎪⎨⎪⎩
∂tUA − ∇ · (D(x)∇UA) − Aq · ∇UA = f(t, x, UA) in (0, T ) × Ω

UA(0, x) = U0(x) in Ω ,

ν · D(x)∇UA(t, x) = 0, t ∈ (0, T ), x ∈ ∂Ω .

(18)

et IT (V0) =
∫
Ω

V (t, x) dx, where V is the solution of⎧⎪⎪⎨⎪⎪⎩
∂tV − ∇ · (D(x)∇V ) = f(t, x, V ) in (0, T ) × Ω ,

V (0, x) = V0(x) in Ω ,

ν · D(x)∇V (t, x) = 0 t ∈ (0, T ), x ∈ ∂Ω .

(19)

If
A ≥ −M |Ω |

mα
> 0, (20)

e then have
inf

u0∈Am
IA

T (u0) ≥ max
V0∈Am

IT (V0). (21)

rior works. The first question in our paper is addressed in Nadin and Marrero [12] in a more particular
etting: for a reaction–diffusion model without an advection field. The results of Nadin et al. [12] prove the
xistence of an optimal initial datum in the case where q ≡ 0 in (1). They also announce the open question
bout the uniqueness of the maximizer. We answer the uniqueness question in Theorem 2 of this present
ork, whenever f is a concave function, despite the presence of a drift term.
Garnier, Hamel and Roques [7] analyze the role of the spatial distribution of the initial condition in

eaction–diffusion models of biological invasion. In [7], the authors investigate the detrimental effect of
ragmentation while we investigate optimal initial data in this present work.

Theorem 3 in our paper is another result in the study of reaction–diffusion equation, where the advection
as an important influence on the qualitative properties of solutions. The earlier works [4,5,16] address the
nfluence of advection on speeding up the propagation of traveling fronts that are solutions of a reaction–
dvection–diffusion equation in an unbounded spatial domain. In these works, it is proved that the speed of
ropagation of traveling front solutions behaves as a linear function of the amplitude A that we place here
n front of the advection term.

We also mention the work [8] that gives a class of flows, in the role of advection, that turns out to be
specially efficient in speeding up mixing in a diffusive medium. The results of [3] also show that the presence
f an advection term can play a role in preventing the speed of propagation of traveling wave solutions from
eing monotone with respect to the diffusivity in the medium.

Lastly, in all of the works [3–5,8,16], mentioned above, the advection is assumed to be a divergence free
ector field. This is not the case in Theorem 3 in our present work.

. Proofs of Theorems 1–3

The following lemma will be used in proving Theorem 1 mainly.

emma 1. Under the assumptions (4) and (5), the solution u = u(t, x) of (1) satisfies the following
roperties:

u ∈ L2 (
0, T ; H1(Ω)

)
∩ L∞ (

0, T ; L2(Ω)
)

and (22)

2 ( −1 )

∂tu ∈ L 0, T ; H (Ω) . (23)

5
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Proof of Lemma 1. To prove (22), we first use (6) to conclude that

∥u(t, ·)∥2
L2(Ω) ≤

∫
Ω

1 dx = |Ω |.

ence, u ∈ L∞ (
0, T ; L2(Ω)

)
∩ L2 (

0, T ; L2(Ω)
)
. Now we multiply (1) by u and integrate by parts to obtain

1
2

∫ T

0 ∂t

(∫
Ω

u2 dx
)

dt + σ
∫ T

0
∫
Ω

|∇u|2 dxdt −
∫ T

0
∫
Ω

(q · ∇u)u dxdt

=
∫ T

0
∫
Ω

uf(u) dxdt.

On the other hand,∫
Ω

(q · ∇u) u dx = 1
2

∫
∂Ω

u2q · ν dx − 1
2

∫
Ω

(∇ · q)u2 dx = −1
2

∫
Ω

(∇ · q)u2 dx,

due to the no flux condition in (5). Therefore,

1
2

∫
Ω

u2(T, x)dx − 1
2

∫
Ω

u2
0 dx + σ

∫ T

0
∫
Ω

|∇xu|2 dxdt

+ 1
2

∫ T

0
∫
Ω

(∇ · q)u2 dxdt =
∫ T

0
∫
Ω

uf(u) dxdt.
(24)

hoosing B such that |∇ · q| ≤ B, and since |f ′(u)| ≤ M , we obtain

σ∥∇xu∥2
L2(0,T ;L2(Ω)) ≤

∫ T

0
∫
Ω

uf(u) dx dt + 1
2 ∥u0∥2

L2(Ω) − 1
2 ∥u(T, ·)∥2

L2(Ω)

+ B
2

∫ T

0 ∥u(t, ·)∥2
L2(Ω) dt

≤ M∥u∥L∞(0,T ;L2(Ω)) + B∥u∥2
L2(0,T ;L2(Ω)) + ∥u0∥2

L2(Ω).

(25)

herefore, u ∈ L2 (
0, T ; H1(Ω)

)
.

In order to prove (23), let v ∈ H1(Ω) such that ∥v∥H1(Ω) ≤ 1. We multiply (1) by v and then integrate
y parts to get ∫

Ω

(∂tu)v dx + σ

∫
Ω

∇xu · ∇xv dx −
∫
Ω

(q · ∇u)v dx =
∫
Ω

f(u)v dx. (26)

pplying Cauchy–Schwartz inequality on the third term of (26) yields⏐⏐⏐⏐∫
Ω

(q · ∇u)v dx

⏐⏐⏐⏐ ≤ ∥v∥L2(Ω)

(∫
Ω

(q · ∇u)2 dx

) 1
2

≤ γ∥v∥L2(Ω)∥∇u∥L2(Ω),

here ∥q∥L∞(Ω) ≤ γ. We also apply Cauchy–Schwartz inequality to the second term of (26) and this yields∫
Ω

(∂tu)v dx ≤
∫
Ω

f(u)v dx + σ∥∇u∥L2(Ω)∥∇v∥L2(Ω) + γ∥∇u∥L2(Ω)∥v∥L2(Ω).

he latter means that the H−1(Ω)-norm of ∂tu(t, ·) satisfies the following estimate

∥∂tu(t, ·)∥H−1(Ω) ≤ M∥u(t)∥L2(Ω) + σ∥∇xu∥L2(Ω) + γ∥∇u∥L2(Ω). (27)

rom (22), it follows that both ∥u(t, ·)∥L2(Ω) and ∥∇xu(t, ·)∥L2(Ω) are in L2(0, T ). Therefore, ∂tu ∈
2 (

0, T ; H−1(Ω)
)
. □

With the above lemma, we can now prove Theorem 1.

roof of Theorem 1. We first prove the existence of maximizing element for IT over the set Am. From

6), we conclude that IT is bounded. This guarantees the existence of a supremum value in the set IT (Am)

6
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(the range of Am under the map IT ). We can then consider a maximizing sequence Un
0 in the set Am, such

hat
lim

n→∞
IT (Un

0 ) = sup
U0∈Am

IT (U0).

s Un
0 ∈ L∞(Ω), there exists Ū0 ∈ L∞(Ω) such that Un

0 converges to Ū0 in the weak ⋆ topology. For
= 1 ∈ L1(Ω), we get ∫

Ω

Un
0 φ =

∫
Ω

Un
0 = m →

∫
Ω

Ū0φ =
∫
Ω

Ū0, as n → +∞.

ence,
∫
Ω

Ū0 = m and thus Ū0 ∈ Am.
Let Un be the weak solution of (1), where the initial condition Un

0 (see [13] for a review of weak solutions
o parabolic equations). That is, for all φ ∈ C∞ ((0, T ) × Ω), we have∫

Ω

Un(T, x)φ(T, x) dx −
∫
Ω

Un(0, x)φ(0, x) dx

−
∫ T

0

∫
Ω

Un(t, x)∂tφ(t, x) dxdt − σ

∫ T

0

∫
Ω

Un(t, x)∆xφ(t, x) dxdt

+
∫ T

0

∫
Ω

Un(t, x)q(x) · ∇xφ(t, x) dxdt

+
∫ T

0

∫
Ω

Un(t, x)(∇x · q(x)) · φ(t, x) dxdt

=
∫ T

0

∫
Ω

f(Un(t, x))φ(t, x) dxdt.

(28)

Since 0 ≤ Un ≤ 1 and Ω is bounded, the sequence {Un(T, ·)} is then bounded in L2(Ω), there exists
¯ ∈ L2(Ω), such that Un(T, ·) converges weakly to ū in L2(Ω). Thus,

∀φ ∈ L2(Ω),
∫
Ω

Un(T, x)φ(x) dx →
∫
Ω

ū(x)φ(x)dx.

The same reasons (0 ≤ Un ≤ 1 and Ω is bounded) imply that {Un}n is bounded in L∞ (
0, T ; L2(Ω)

)
.

ence, there exists U ∈ L∞ (
0, T ; L2(Ω)

)
such that Un converges, in the weak ⋆ topology, to U in

∞ (
0, T ; L2(Ω)

)
. That is,

∀φ ∈ L∞ (
0, T ; L2(Ω)

)
,∫ T

0

∫
Ω

Un(t, x)φ(t, x) dx dt →
∫ T

0

∫
Ω

U(t, x)φ(t, x) dx dt as n → +∞.

Also, from (25) and (27), it follows that the sequence {∂tU
n} is uniformly bounded in L2 (

0, T ; H−1(Ω)
)

y a constant independent of n. Thus, there exists v ∈ L2 (
0, T ; H−1(Ω)

)
such that ∂tU

n converges, in the
eak ⋆ sense, to v ∈ L2 (

0, T ; H−1(Ω)
)
. That is, for all φ ∈ L2 (

0, T ; H1(Ω)
)

we have∫ T

0

∫
Ω

∂tU
n(t, x)φ(t, x) dx dt →

∫ T

0

∫
Ω

v(t, x)φ(t, x) dx dt, as n → +∞.

e note that, for all φ ∈ C∞
c (0, T ) × Ω , we have∫ T ∫

∂tU
n(t, x)φ(t, x) dx dt = −

∫ T ∫
Un(t, x)∂tφ(t, x) dx dt.
0 Ω 0 Ω

7
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Passing to the limit as n → +∞ leads to ∂tU = v. For φ ∈ H1 (
0, T ; L2(Ω)

)
, such that φ(0, x) = 0 for all

x ∈ Ω , we have ∫ T

0

∫
Ω

∂tU
n(t, x)φ(t) dx dt

=
∫
Ω

Un(T, x)φ(T, x) dx −
∫ T

0

∫
Ω

Un(t, x)∂tφ(t, x) dx dt.

Passing to the limit as n → +∞ in the latter, we get∫ T

0

∫
Ω

v(t, x)φ(t, x) dx dt

=
∫
Ω

ū(x)φ(T, x) dx −
∫ T

0

∫
Ω

U(t, x)∂tφ(t, x) dx dt

=
∫
Ω

ū(x)φ(T, x) dx −
∫
Ω

U(T, x)φ(T, x) dx +
∫ T

0

∫
Ω

∂tU(t, x)φ(t, x) dx dt

=
∫
Ω

ū(x)φ(T, x) dx −
∫
Ω

U(T, x)φ(T, x) dx +
∫ T

0

∫
Ω

v(t, x)φ(t, x) dxdt,

s ∂tU = v. Thus, ū(x) = U(T, x) a.e in Ω . For φ ∈ H1 (
0, T ; L2(Ω)

)
, such that φ(T, x) = 0 in Ω , we have∫ T

0

∫
Ω

∂tU
n(t, x)φ(t, x) dx dt

=
∫ T

0

∫
Ω

Ū0(x)φ(0, x) dx −
∫ T

0

∫
Ω

Un(t, x)∂tφ(t, x) dx dt.

assing to the limit as n → +∞, we obtain∫ T

0

∫
Ω

v(t, x)φ(t, x) dx dt

= −
∫
Ω

Ū0(x)φ(0, x) dx −
∫ T

0

∫
Ω

U(t, x)∂tφ(t, x) dx dt

= −
∫
Ω

Ū0(x)φ(0, x) dx +
∫
Ω

U(0, x)φ(0, x) dx

+
∫ T

0

∫
Ω

∂tU(t, x), φ(t, x) dx dt

=
∫
Ω

Ū0(x)φ(T, x) dx −
∫
Ω

U(T, x), φ(T, x) dx

+
∫ T

0

∫
Ω

v(t, x)φ(t, x) dx dt.

Hence, Ū0(x) = U(0, x). From Lemma 1, we know that

Un ∈ D :=
{

u ∈ L2 (
[0, T ]; H1(Ω)

)
, ∂tu ∈ L2 (

[0, T ]; H−1(Ω)
)}

nd {Un}n is bounded in D. Thanks to Aubin–Lions Lemma [9], the set D is compactly embedded in
2 (

[0, T ]; L2(Ω)
)
. Hence, there exists a Cauchy subsequence of {Un}n in L2 (

[0, T ]; L2(Ω)
)
. Then, the

equence {Un}n converges strongly to U in L2 (
[0, T ]; L2(Ω)

)
. As f is Lipschitz, it follows that∫ T ∫

f(Un(t, x))φ(t, x) dx dt →
∫ T ∫

f(U(t, x))φ(t, x) dx dt.

0 Ω 0 Ω
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Taking the limit in (28), we get∫
Ω

U(T, x)φ(T, x) dx −
∫
Ω

U(0, x)φ(0, x) dx −
∫ T

0

∫
Ω

U(t, x), ∂tφ(t, x) dx

−σ

∫ T

0

∫
Ω

U(t, x)∆φ(t, x) dx +
∫ T

0

∫
Ω

U(T, x)q(x) · ∇xφ(t, x) dx

=
∫ T

0

∫
Ω

f(U(t, x))φ(t, x) dx.

his implies that U is a weak solution of (1). Taking φ = 1 yields

sup
Am

IT (u0) = lim
n→∞

IT (Un
0 ) = lim

n→∞

∫
Ω

Un(T, x) dx

= lim
n→∞

∫
Ω

Un(T, x)φ(x) dx =
∫
Ω

U(T, x) dx = IT (Ū0).

herefore, Ū0 is a maximizing element of IT in Am. □

Now, we move to the proof of Theorem 2, which addresses the uniqueness of the optimal initial datum.

roof of Theorem 2. First, we will prove that IT is strictly concave. Let λ ∈ (0, 1) and let U be the
olution of (1) with the initial condition λU0

1 (x) + (1 − λ)U0
2 (x) and let v(t, x) = λU1(t, x) + (1 − λ)U2(t, x),

here U1 and U2 are the solutions of (1) with initial condition U0
1 (x) and U0

2 (x) respectively. As f is strictly
oncave, we have

∂tv − σ∆v − q · ∇xv = λf(U1) + (1 − λ)f(U2) < f(λU1 + (1 − λ)U2) = f(v).

rom the equation satisfied by U and the inequality satisfied by v, and since f is of class C1, it follows that
:= v − U satisfies

∂tw − σ∆w − q · ∇xw < f(v(t, x)) − f(U(t, x)) := b(t, x)w, (29)

here b(t, x) is a bounded continuous function obtained from the fact that f is C1(R) (hence Lipschitz) and
< v, U < 1. Namely,

b(t, x) =
{

f(v(t,x))−f(U(t,x))
v(t,x)−U(t,x) , if v(t, x) ̸= U(t, x)

f ′(v(t, x)) if v(t, x) = U(t, x).

oreover,
w(0, x) = v(0, x) − U(0, x) = 0 for all x ∈ Ω , and ∂w

∂ν
= 0 on (0, T ) × ∂Ω .

wing to the strong parabolic comparison principle on the function w (see Theorem 7 and the remark
fterwords in [15], for example), we conclude that w ≤ 0 in [0, T ] × Ω . That is, v ≤ U in [0, T ] × Ω .

Now, we claim that v(T, x) < U(T, x) in an open set contained in Ω . Suppose to the contrary that
(T, x) = U(T, x) in Ω . We have

∂tv − σ∆v − q · ∇xv − f(v) < ∂tu − σ∆U − q · ∇U − f(U) = 0,

nd since v(T, x) = U(T, x), we can reduce f(U) and f(v) for t = T to get

∂tv(T, x) − σ∆v(T, x) − q(x) · ∇xv(T, x)

< ∂tU(T, x) − σ∆U(T, x) − q(x) · ∇U(T, x).

9
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Again, since v(T, x) = U(T, x), we have

∆v(T, x) = ∆U(T, x) and ∇xv(T, x) = ∇xU(T, x).

his implies that
∂tv(T, x) < ∂tU(T, x).

ence, ∂t(u − v)(T, x) > 0 which means that (U − v)(T, x) is increasing at t = T . Then, there exists ε > 0
uch that

U(T − ε, x) − v(T − ε, x) < U(T, x) − v(T, x) = 0.

his contradicts the fact that v(t, x) ≤ U(t, x) and proves our claim. Therefore,

IT (λU0
1 + (1 − λ)U0

2 ) = IT (λU0
1 (x) + (1 − λ)U0

2 (x))

=
∫
Ω

U(t, x) dx >

∫
Ω

v(T, x) dx

= λIT (U0
1 ) + (1 − λ)IT (U0

2 ).

his means that IT is strictly concave and guarantees the uniqueness of the maximal element.
In order to prove the uniqueness of the above maximal element, we suppose that there exists V 0

1 and V 0
2

n Am, such that both are maximizers of IT in Am. Then,

IT (V 0
1 ) = IT (V 0

2 ) = sup
u0∈Am

IT (u0).

et µ be such that 0 < µ < 1. We then have

V = µV 0
1 + (1 − µ)V 0

2 ∈ Am,

ecause
∫
Ω

V (x) dx = m. Since IT is strictly concave, it follows that

IT (V ) > µIT (V 0
1 ) + (1 − µ)IT (V 0

2 ) = sup
u0∈Am

IT (u0).

owever, this contradicts the fact that V 0
1 and V 0

2 are maximizers of IT in Am. Therefore, the maximizer
f IT is unique in the set Am. □

Now we prove Theorem 3 under the assumption (7) on the advection field q.

roof of Theorem 3. Let U0 ∈ Am be an arbitrary initial datum for (9). This means that IA
T (U0) =

Ω
UA(T, x) dx is not necessarily the largest value in the set IA

T (Am). We integrate Eq. (9), in both time
nd space, to get ∫

Ω

UA(T, x) dx =
∫
Ω

UA(0, x) dx + A

∫ T

0

∫
Ω

q(x) · ∇UA(t, x) dx dt

+
∫ T

0

∫
Ω

f(UA(t, x)) dx dt.

(30)

n integration by parts of the second term on the right hand side of (9) yields∫
Ω

UA(T, x) dx =
∫
Ω

UA(0, x) dx − A

∫ T

0

∫
Ω

(∇ · q(x))UA(t, x) dx dt

+
∫ T ∫

f(UA(t, x)) dx dt.

(31)
0 Ω

10
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We claim now that the map t ↦→
∫
Ω

UA(t, x) dx is increasing. In fact, if we integrate (9) over (0, t) × Ω , we
hen get ∫

Ω

UA(t, x) dx = m − A

∫ t

0

∫
Ω

(∇ · q(x))UA(s, x) dx ds

+
∫ t

0

∫
Ω

f(UA(s, x)) dx ds.

(32)

s t increases, the second and third term on the right hand side increase in t because the integrand functions
re positive. Hence, our claim follows.

Now we integrate the first equation of (10) in both variables t and x to get∫
Ω

V (T, x) dx =
∫
Ω

V0(x) dx +
∫ T

0
∫
Ω

f(V ) dx dt

= m +
∫ T

0

∫
Ω

f(V ) dxdt.

(33)

et
A ≥ −M |Ω |

mα
> 0,

here α = maxx∈Ω ∇ · q(x) < 0 is the constant appearing in the assumption (7). Using the fact that the
ap t ↦→

∫
Ω

UA(t, x) dx is increasing, we get∫
Ω

UA(t, x) dx ≥
∫
Ω

UA(0, x) dx, for any t > 0.

e will use this as follows:

IA
T (U0) =

∫
Ω

UA(T, x) dx

= m − A

∫ T

0

∫
Ω

(∇ · q(x))UA(t, x) dx dt +
∫ T

0

∫
Ω

f(UA(t, x)) dx dt.

≥ m − Aα

∫ T

0

∫
Ω

UA(t, x) dx dt ≥ m − Aα

∫ T

0

∫
Ω

UA(0, x) dx dt

≥ m − AαTm ≥ m + M |Ω |
mα

αTm = m + M

∫ T

0

∫
Ω

dx dt.

owever, the solution V satisfies 0 ≤ V ≤ 1 (for the same reasons given in explaining (6)). This and the
revious inequality then lead to

IA
T (U0) ≥ m + M

∫ T

0

∫
Ω

V (t, x) dx dt

≥ m +
∫ T

0

∫
Ω

f(V (t, x)) dx dt

=
∫
Ω

V (T, x) dx = IT (V0) (from (33)).

(34)

he passage from the first line to the second in (34) is based on the Mean Value Theorem’s application on
he function f , which satisfies ∥f ′∥∞ ≤ M and f(0) = 0 :

∀(t, x), f(V (t, x)) = f(V (t, x)) − f(0) = f ′(C(t, x))V (t, x) ≤ MV (t, x),

or some constant 0 < C(t, x) < V (t, x).
Recalling that the initial datum U0 was arbitrarily chosen from the set Am, and choosing V0 to be such

hat
IT (V0) = max IT (v0),
v0∈Am

11
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we conclude that
inf

u0∈Am
IA

T (u0) ≥ max
v0∈Am

IT (v0)

nd this completes the proof of Theorem 3. □

emark 2. We mention that the right hand side of (31) contains the amplitude A of the advection term
q. Having the assumption ∇ · q ≤ α < 0, one needs to make sure that the quantity

−A

∫ T

0

∫
Ω

(∇ · q(x))UA(t, x) dx dt

does not diverge to +∞, when A → +∞. Otherwise, one will have a contradiction with the fact that the left
hand side is a bounded quantity (bounded below by 0 and above by |Ω |, as 0 ≤ UA ≤ 1). In fact, if {An}n is
a sequence that goes to +∞, one can prove that the corresponding solutions UAn converge (at least in the
sense of distributions) to a function w, known as a first integral of the drift q (see [5], for e.g.), characterized
by

q · ∇w = 0 a.e. in Ω .

As a consequence, we have

lim
A→+∞

∫
Ω

(∇ · q(x))UA(t, x) dx = − lim
A→+∞

∫
Ω

q(x) · ∇UA(t, x) dx

=
∫
Ω

q(x) · ∇w(x) dx = 0.

he latter guarantees that the right hand side remains bounded even when the amplitude A is large.

. On the proofs of Theorems 4–6

The proof of Theorem 4 is similar to the proof of Theorem 1. The main difference appears in Lemma 1.
n what follows, we will highlight the differences that would appear in proving an analogue of Lemma 1,
hich leads to the results in Theorem 4. In the setting of Theorem 4, after multiplying both sides of the

eaction–advection–diffusion equation in (13), and then integrating by parts, we get the term

−
∫ T

0

∫
Ω

∇x · (D(x)∇xu(t, x))u(t, x)dxdt

=
∫ T

0

∫
Ω

∇x · (D(x)∇xu(t, x))dxdt −
∫ T

0

∫
∂Ω

[ν · D(x)∇xu(t, x)  
=0

]u(t, x) dxdt

≥ θ∥∇xu∥2
L2(0,T ;L2(Ω)).

The latter allows us to conclude that

θ∥∇xu∥2
L2(0,T ;L2(Ω)) ≤ M∥u∥L∞(0,T ;L2(Ω)) + B∥u∥2

L2(0,T ;L2(Ω)) + ∥u0∥2
L2(Ω),

where θ is the coercivity constant assumed in (14) on the diffusion matrix D.
In (26), after integrating the second term by parts, we obtain∫

Ω

∇xu(t, x)D(x)∇xv(t, x) dx ≤ ∥D∥∞

∫
Ω

∇xu(t, x)∇xv(t, x) dx
≤ ∥D∥∞∥∇xu∥L2(Ω)∥∇xv∥L2(Ω),

12
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where ∥D∥∞ := max1≤i,j≤n{maxΩ |Dij(x)|}. Hence,∫
Ω

(∂tu)v dx ≤
∫
Ω

f(u)v dx + ∥D∥∞∥∇u∥L2(Ω)∥∇v∥L2(Ω) + γ∥∇u∥L2(Ω)∥v∥L2(Ω).

n (28), we take the test function φ to be in C∞ ((0, T ) × Ω) and require that it has a compact support in
he space variable x. The diffusion term will then give rise to∫ T

0

∫
Ω

∇ · (D(x)∇xUn(t, x))φ(t, x) dx dt

=
∫ T

0

∫
Ω

Un(t, x)∇ · (D(x)∇xφ(t, x)) dx dt

−
∫ T

0

∫
∂Ω

∇xu(t, x)D(x)∇xφ(t, x) dx dt

=
∫ T

0

∫
Ω

Un(t, x)∇ · (D(x)∇xφ(t, x)) dx dt,

s φ is compactly supported in the x variable. The rest of the proof of Theorem 4 is the same as that of
heorem 1.
We omit the proofs of Theorem 5 and Theorem 6 as they are similar to those of Theorem 2 and Theorem 3

espectively.
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