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Abstract
This paper is concerned with an integral equation that models discrete time dynamics of
a population in a patchy landscape. The patches in the domain are reflected through the
discontinuity of the kernel of the integral operator at a finite number of points in the whole
domain.Weprove the existence anduniqueness of a stationary state under certain assumptions
on the principal eigenvalue of the linearized integral operator and the growth term as well.
We also derive criteria under which the population undergoes extinction (in which case the
stationary solution is 0 everywhere).

Keywords Structured integro-difference equation · Principal eigenvalue · Extinction ·
Discontinuous kernel · Patchy landscape
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1 Introduction andMain Results

In this paper, we study the long term dynamics of a population in a heterogeneous landscape.
The density function of this population obeys an integral equation, which we describe in what
follows. The population density in the nth generation, at a location x, is denoted by un(x).
The growth phase is described by some non-negative function F, and the dispersal phase is
described by a dispersal kernel k(x, y). The probability that an individual, who started its
dispersal process at x, will settle in [y, y + dy) is then given by the product k(x, y)dy. The
population density in the next generation, at a location x, is then obtained by summing up
arrivals at x from all possible locations y. This yields the integral equation
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un+1(x) =
∫

�

k(x, y)F(un(y)) dy, (1)

where un(x) stands for the density of the population in the nth generation at a position x .
Let us mention some past works that relate to the above model. Musgrave and Lutscher

[9] considered (1) in the case where the domain � consists of patches that result a difference
in the dispersal behaviour. At the interface of two patch types, the authors of [9] incorporate
recent results of Ovaskainen and Cornell [10] that, in general, lead to a discontinuous density
function for the random walker. In other words, a discontinuity in the dispersal kernel k at
the interface of these patches appears in the study done in [9]. In [9], it is shown that the
dispersal kernel can be characterized as the Green’s function of a second-order differential
operator. Later, Watmough and Beykzadeh [1] made generalization of the classic Laplace
kernel, which includes different dispersal rates in each patch as well as different degrees of
bias at the patch boundaries. We also mention the work of Lewis et al. [8], which considers
the same model (1), but with a different set of assumptions on the kernel k. In [8], the kernel
k is assumed to be in the form k(x, y) = k(x − y). The more important difference between
our work and [8] is that the kernel k is assumed to be continuous in [8]. In our present work,
we allow discontinuity of k at a finite number of points of the domain. For more details on
the nature of discontinuity of our kernel, see the assumption (H1) below. Roughly speaking,
the discontinuity points account for a different dispersal behaviour; hence, a change in the
patch where the population is moving. The discontinuity of k adds more technicality to the
proofs of the main results than in [8], especially those involving comparison arguments.

Ourmodel (1) is a discrete time analogue of the (continuous) time-space reaction-diffusion
model

∂u

∂t
(t, x) = ∂2u

∂x2
+ f (u). (2)

In (2), t stands for the continuous time variable and x stands for the continuous space variable.
A higher dimensional version of (2), which also accounts for an underlying advection and
heterogeneity in the landscape, is the semilinear parabolic partial differential equation

∂u

∂t
(t, x) = �u + q(x) · ∇u + f (u), t > 0, x ∈ R

N , (3)

for some incompressible vector field q : R
N → R

N . When (3) is used to describe the
evolution of a population density u(t, x), it is assumed that the dispersal of the species
follows the normal distribution with zero mean, which however is not the case for most
species. Equations of the type (3) have been studied in much detail. Traveling fronts, or
pulsating traveling fronts, form a particular class of solutions to such equations. The existence
and qualitative properties of these travelling fronts and their propagation speeds have been
studied in a long list of works (see [3–6] and the references therein).

Equation (1) represents an alternative discrete-time model often used in biological liter-
ature. An advantage of the IDE (1) over the reaction-diffusion equation (2) lies in the fact
that (1) can be used to model the spatial spread of long-distance dispersers, while (2) is
inappropriate in this situation.

In this paper, we study the convergence of the integro-difference equation (1), where
� = (−a, a). We make the following assumptions:

(H1) The function k ≥ 0 is a bounded nonnegative function on � × �, such that

for all (x, y) ∈ �2, δ < k(x, y) ≤ �, (4)
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for some δ, � > 0. Moreover, we assume that there exists a finite set of points
{ai }1≤i≤n ⊂ �, dividing the domain � into intervals

�i = (ai , ai+1) for 1 ≤ i ≤ n − 1, �0 = (−a, a1) and �n = (an, a)

and that k is continuous on each �i × � j for 1 ≤ i, j ≤ n.

(H2) The nonlinearity F satisfies: F is continuous, 0 ≤ F(x) ≤ M for all x ∈ R.

(H3) The function F is strictly increasing on [0,∞) and it vanishes elsewhere. We assume
that F differentiable at 0 and we set

r0 := F ′(0) > 1. (5)

Furthermore, the function F satisfies

F(u)

u
<

F(v)

v
, for all u > v > 0. (6)

In this work, we will study the convergence of the sequence un+1 = T (un), where T is
defined by

T (u)(x) =
∫

�

k(x, y)F(u(y))dy, for u ∈ L2(�). (7)

Definition 1 (Stationary solution) A measurable function w: � → R is called a stationary
solution of (1) if it satisfies w = T (w).

Definition 2 We denote the linearization of the nonlinear operator T , at u = 0, by

T0(u)(x) := r0

∫
�

k(x, y)u(y)dy, x ∈ �.

We denote by

X = {
u ∈ L2(�) : u is continuous on � except at finitely many points

}
. (8)

We will make use of Krein-Rutman theorem in analyzing the linearized operator T0,
introduced in Definition 2. We recall the statement of this theorem, below. The proof of this
result can be found in [2].

Theorem A (Krein-Rutman Theorem, [2] Theorem 19.2) Let E be a Banach space and let
K ⊂ E be a closed convex cone such that K − K is dense in E . Let A : E → E be a
non-zero compact linear operator which is positive, meaning that A(K ) ⊂ K , with positive
spectral radius r(A). Then, there exists a principal eigenvalue λ0 = r(A) > 0 of A, and an
eigenfunction u ∈ K \ {0} of A such that Au = λ0u.

We will apply Theorem A to the operator T0, where we let the Banach space E be L2(�)

and take

K = L2(�)+,

where

L2(�)+ := {u ∈ L2(�), such that u ≥ 0 in �}.
Proposition 1 The operator T0 maps L2(�) into itself. Moreover, T0 is a positive compact
operator and there exists an eigenfunctionφ0 ∈ K \{0} of T0 that corresponds to the principal
eigenvalue λ0 := r(T0).
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Proof We know that K is a cone and the set K − K is dense in L2(�). The map T0 maps
L2(�) into itself because

‖T0(u)‖22 = r20

∫
�

(∫
�

k(x, y)u(y)dy

)2

dx

≤ r20

∫
�

‖k(x, ·)‖22‖u‖22 dx
= r20‖k‖22‖u‖22 < ∞.

Since k ∈ L2(�2), it then follows (see Lax [7], for eg.) that T0 is a compact linear operator.
Moreover, if u ∈ K and x ∈ �, then

T0(u)(x) = r0

∫
�

k(x, y)u(y) dy ≥ r0δ
∫ a

−a
u(y) dy ≥ 0

as u ≥ 0 and u �≡ 0. Hence, T0(u) ≥ 0 and T0(u) ∈ K . Then, T0 is positive.
Since T0 is a bounded linear operator, the spectral radius of T is (see [7])

lim
n→∞ ‖T n

0 ‖ 1
n = r(T0)

For v(x) = 1√|�| , we have ‖v‖2 = 1. Using v, we obtain

‖T n
0 ‖ = sup

‖u‖2≤1
‖T n

0 (u)‖2 ≥ ‖T n
0 (v)‖2

≥
(∫

�

(
r0

∫
�

k(x, y1)T n−1
0 (v)(y1)dy1

)2

dx

) 1
2

=
(∫

�

(
rn0

∫
�

k(x, y1)
∫

�

k(y1, y2)
∫

�

· · ·
∫

�

k(yn−1, yn)v(yn)dyn · · · dy1
)2

dx

) 1
2

≥ rn0

(
δ2n

∫
�

(∫
�

· · ·
∫

�

1√|�|dyn · · · dy1
)2

dx

) 1
2

= rn0 δn
|�|
|�|

n+1

= rn0 δn |�|n .

Taking the nth root both sides and the limit as n goes to ∞ we get that

r(T0) ≥ r0δ|�| > 0. (9)

This proves that the spectral radius is positive ( i.e. r(T0) > 0).We can then apply TheoremA
to obtain the existence of an eigenfunction φ0 ∈ K of T0 that corresponds to the principal
eigenvalue λ0 := r(T0). ��

Our first two results answer the question about the stationary state of (1) in the case where
F(0) = 0. The main criterion used to decide the nature of the stationary solution is the value
of the principal eigenvalue λ0.

Theorem 1 Let {un}n be a solution of (1), with the initial condition u0 ∈ X. Suppose that F
and k satisfy the assumptions (H1), (H2) and (H3). Assume furthermore that F(0) = 0. If
λ0 ≤ 1, then
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1. 0 is the only stationary solution of (1) in X.
2. The sequence {un}n converges to 0 in L2(�), as n → ∞.

Theorem 1 shows that the population will eventually undergo extinction, whenever the
principal eigenvalue λ0 is less or equal 1. The next theorem shows that the threshold λ0 = 1
is sharp in the sense that the population settles at a positive stationary state whenever λ0 > 1.

As a consequence of Theorem 1, we can now consider the case with mortality. In general,
mortality of individuals is included in the dispersal [9]. This can be reflected on the kernel
by assuming that ∫

�

k(x, y) dy ≤ 1 for all x ∈ �. (10)

Under the assumption (10), the following result holds:

Corollary 1 Let {un}n be a solution of (1), with the initial condition u0 ∈ X. Suppose that F
and k satisfy the assumptions (H1), (H2), (H3) and the additional assumption (10). Assume
furthermore that F(0) = 0 and r0 ≤ 1. Then,

1. 0 is the only stationary solution of (1) in X.
2. The sequence {un}n converges to 0 in L2(�), as n → ∞.

Our third result in the case where F(0) = 0 is the following:

Theorem 2 Suppose that F and k satisfy the assumptions (H1), (H2) and (H3). Assume
furthermore that F(0) = 0. Suppose that u0 ∈ X , u0 ≥ 0, u0 �≡ 0 and that λ0 > 1. Then,

1. There exists a unique positive stationary solution w of (1).
2. The sequence {un}n converges to w in L2(�), as n → ∞.

In the next theorem, we will see that the stationary state will be positive, regardless of λ0,
whenever F(0) > 0.

Theorem 3 Suppose that F and k satisfy the assumptions (H1), (H2) and (H3). Assume
furthermore that F(0) > 0. If u0 ∈ X, u0 ≥ 0 and u0 �≡ 0, then

1. There exists a unique positive stationary solution w of (1).
2. The sequence {un}n converges to w in L2(�), as n → ∞.

2 Proofs of theMain Results

We start with a series of Lemmas that will be used in the proofs of the theorems that we
announced in Sect. 1, above.

Lemma 1 Let w be a stationary solution of (1). Then, w ≥ 0. Moreover, if w �≡ 0, then
w(x) > 0 for all x ∈ �.

Proof First we mention that, since F is nonnegative and k > 0, then the function w is
nonnegative. We prove the claim according to the value of F(0). If F(0) > 0, then

∀x ∈ �, w(x) =
∫

�

k(x, y)F(w(y)) dy > 2aδF(0) > 0.

If F(0) = 0, then for x ∈ �, using (4) we have
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w(x) =
∫

�

k(x, y)F(w(y)) dy ≥ δ

∫
�

F(w(y)) dy > 0,

because if
∫
�
F(w(y)) dy = 0, then F(w(y)) = 0 a.e in�. The latter implies thatw(y) = 0

a.e in �. However, as w �≡ 0, there exists z ∈ � such that w(z) > 0. Then,

0 < w(z) =
∫

�

k(z, y)F(w(y)) dy = 0

as w(y) = 0 a.e in �. This is a contradiction. ��
Lemma 2 Let u, v ∈ X (defined in (8)), such that u ≥ T (u) and v ≤ T (v). If u > 0, then
u ≥ v.

Proof First, we show that inf x∈� u(x) > 0. We will discuss this according to the value of
F(0). If F(0) > 0, then we have

∀x ∈ �, u(x) ≥ T (u)(x) ≥ 2aδF(0) > 0.

If F(0) = 0, then

∀x ∈ �, u(x) ≥ T (u)(x) =
∫

�

k(x, y)F(u(y)) dy ≥ δ

∫
�

F(u(y)) dy > 0,

Note that
∫
�
F(u(y)) dy > 0, because we can find an interval in � where u > 0, which

implies F(u) > 0 on that interval. This proves our claim. Also, we have

v ≤ T (v) =
∫

�

k(·, y)F(v(y)) dy ≤ 2a�M .

Since u, v ∈ X , we denote by {Bi }1≤i≤p and {C j } 1≤ j≤q the subintervals of � such that u
and v are continuous on each Bi and C j respectively. Let Ai j = Bi ∩ C j and define

αi j := inf
{
α > 0, αu(x) ≥ v(x) for all x ∈ Ai j

}
.

The infimum exists as the set
{
α > 0, αu|Ai j ≥ v|Ai j

}
is nonempty, infx∈� u(x) > 0 and v

is bounded above. It follows from the continuity of u and v over Ai j that αi j u ≥ v in Ai j .
Moreover, from the definition of inf, there exists xi j ∈ Ai j such that αi j u(xi j ) = v(xi j ). Let

α0 = max
i j

(αi j ) = αi0 j0 .

Then, α0u ≥ v in �. Denote by x0 := xi0 j0 . We claim that α0 ≤ 1, which would then prove
our lemma. Suppose to the contrary that α0 > 1. Then,

0 = α0u(x0) − v(x0)

≥ α0T (u)(x0) − T (v)(x0)

=
∫

�

k(x0, y) [α0F(u(y)) − F(v(y))] dy.

From assumption (6), and since F is increasing, we get

α0F(u(y)) = α0u(y)
F(u(y))

u(y)
> α0u(y)

F(α0u(y))

α0u(y)
≥ F(v(y)) for all y.

Thus, ∫
�

k(x0, y) [α0F(u(y)) − F(v(y))] dy > 0,

which is contradiction. Hence, u ≥ α0u ≥ v in �. Therefore, u ≥ v in �. ��
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Lemma 2 leads to the uniqueness of a non-zero stationary solution of (1).

Corollary 2 (Uniqueness of the stationary state) There exists at most one non-zero stationary
solution of (1) in X.

Proof In fact, if there exists two non-zero stationary solutions u and v, we get u ≥ T (u)

and v ≤ T (v). Lemma 1 implies that u > 0 and Lemma 2 yields that u ≥ v. Also, we have
v ≥ T (v) and u ≤ T (u). From Lemma 1, we then get that v > 0. Lemma 2 implies that
v ≥ u. Therefore, u ≡ v. ��

The following lemma will be used in proving the convergence in a certain mode of a
sequence {un}n satisfying (1). The lemma is announced in terms two types of equicontinuity of
a sequence of functions.Wewill recall the definitions of pointwise and uniformequicontinuity
in what follows and then announce the lemma involving these notions.

Definition 3 (Pointwise equicontinuous)A sequence of functions { fn}n is said to be pointwise
equicontinuous on a set J if

∀ε > 0, ∀z ∈ J , ∃ δ(z) > 0, such that | fn(x) − fn(z)| < ε,

whenever x ∈ J and |x − z| < δ(z).
(11)

Definition 4 (Uniformly equicontinuous) A sequence of functions { fn}n is said to be
uniformly equicontinuous on a set J if

∀ε > 0, ∃ δ > 0, such that | fn(x) − fn(y)| < ε

whenever x, y ∈ J and |x − y| < δ.
(12)

Lemma 3 Let J be a compact set. If { fn}n ⊂ C(J ) is pointwise equicontinuous, then { fn}n
is uniformly equicontinuous.

Proof Let ε > 0. For every z ∈ J , there exists δz > 0 such that for all x ∈ BJ (z, δz), we
have | fn(x) − fn(z)| < ε/2 for all n ∈ N, where B(z, δz) is the open ball of center z and
radius δz and BJ (z, δz) = J ∩ B(z, δz). We have

⋃
z∈J

BJ

(
z,

δz

2

)
= J .

By compactness of J , there exist z1, . . . , zm ∈ J such that

J =
m⋃
i=1

BJ

(
zi ,

δzi

2

)
.

We take δ0 < min1≤i≤m

(
δzi
2

)
.Let x, y ∈ J such that |x−y| < δ0. Then, x ∈ BJ

(
z j ,

δz j
2

)
,

for some 1 ≤ j ≤ m. Now,

|y − z j | ≤ |x − y| + |x − z j | < δ0 + δz j

2
≤ δz j

2
+ δz j

2
= δz j .

Thus, y ∈ BJ (z j , δz j ). It then follows that

| fn(x) − fn(y)| ≤ | fn(x) − fn(z j )| + | fn(y) − fn(z j )| <
ε

2
+ ε

2
= ε,

for all n ∈ N. Hence, the set { fn}n is uniformly equicontinuous. ��
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Lemma 4 If u0 ∈ X, then the sequence {un}n, obtained from (1) with an initial condition
u0, satisfies un ∈ X for all n ∈ N. Moreover, if {un}n converges pointwise to w ∈ L2(�),
then w ∈ X.

Proof As u0 ∈ X , there exists m subintervals {Ai }1≤i≤m in �, such that u0 is continuous
over each Ai . We claim that for every n, un is continuous on � except possibly at the points
{ai }1≤i≤n (introduced in assumption (H1)) and at the discontinuity points of u0, which are
finitely many. Let Bi j be the interval defined by

Bi j := �i ∩ A j .

For x ∈ Bi j , we have

u1(x) =
∫

�

k(x, y)F(u0(y)) dy =
∑
i, j

∫
Bi j

k(x, y)F(u0(y)) dy.

Since y �→ k(x, y)F(u0(y)) is continuous on each Bi j , it follows that u1 is continuous at x
as a sum of a finite number of continuous functions. Hence, u1 is continuous on � except
possibly at the points mentioned in the claim. Suppose now that the claim is true for all ui
such that i ≤ n. Then,

un+1(x) =
∫

�

k(x, y)F(un(y)) dy =
∑
i, j

∫
Bi j

k(x, y)F(un(y)) dy.

As the function y �→ k(x, y)F(un(y)) is continuous on each Bi j , it then follows that un+1

is continuous at x . This proves the first assertion in our Lemma.
Wemove now to the proof of the second assertion. Suppose that {un}n converges pointwise

to w ∈ L2(�). We claim that w is continuous on � except possibly at the points {ai }1≤i≤n

and at the points of discontinuity of u0. Suppose that there exists z ∈ Bi0 j0 such that w is
discontinuous at z, for some i0 and j0. Since Bi0 j0 is open, there exists r > 0 such that

D := [z − r , z + r ] ⊂ Bi0 j0 .

We have {un}n are all continuous on D. Let us show that {un}n is pointwise equicontinuous.
Let x0 ∈ D and ε > 0. The function (x, y) �→ k(x, y) is uniformly continuous on D × Bi j ,
for all (i, j). This is because the function k can be extended to a continuous and bounded
function on each of the compact sets D × Bi j . Thus, there exist hi j > 0 such that, for all
(x, y) and (x1, y1) in D × Bi j , we have

|(x − x1, y − y1)| < hi j �⇒ |k(x, y) − k(x1, y1)| < l := ε

2aM
,

where M is an upper bound of F . Let h := mini, j {hi j }. Then, for all i, j and for all
(x, y) ∈ D × Bi j , we have

|x − x0| = |(x, y) − (x0, y)| < h �⇒ |k(x, y) − k(x0, y)| < l.

Thus, for every n and for every x ∈ D, such that |x − x0| < h, we have

|un(x) − un(x0)| < M
∫ a

−a
|k(x, y) − k(x0, y)| dy

≤ M
∑
i, j

∫
Bi j

|k(x, y) − k(x0, y)| dy

< M
∑
i, j

ε

2aM
|Bi j | = ε,

123



Journal of Dynamics and Differential Equations

where |Bi j | denotes the Lebesgue measure of Bi j .Hence, {un}n is pointwise equicontinuous.
From Lemma 3, we conclude that {un}n is uniformly equicontinuous because D is compact.
Moreover, {un}n ⊆ C(D) converges tow pointwise and it is equicontinuous. Therefore, {un}n
converges uniformly to w; hence, w is continuous over D. This contradicts the assumption
that w is discontinuous at z ∈ D. The claim then follows and w ∈ X . ��
Lemma 5 If u1 ≥ u0 (respectively u1 ≤ u0), then {un}n is increasing (respectively
decreasing).

Proof Suppose that, for all i ≤ n − 1, we have ui+1 ≥ ui . Then,

un+1(x) =
∫

�

k(x, y)F(un(y)) dy ≥
∫

�

k(x, y)F(un−1(y)) dy = un(x),

because F is increasing. The other case can be proven similarly. ��
Lemma 6 If {un}n converges pointwise to w, then {un}n converges to w in L2(�).

Proof Since w is the limit of {un}n, it is a stationary solution: indeed

T (w) = T
(
lim
n→∞ un

)
= lim

n→∞ T (un) = lim
n→∞ un+1 = w.

In the above equalities, we can interchange the limit and the integral by Lebesgue dominated
convergence theorem. Thus,

‖un − w‖22 = ‖un − T (w)‖22 =
∫

�

(∫ a

−a
k(x, y)(F(un−1(y)) − F(w(y))) dy

)2

dx .

We have the following first inequality:
(∫ a

−a
k(x, y)(F(un−1(y)) − F(w(y))) dy

)2

≤
(∫ a

−a
[�(M + M)] dy

)2

≤ 16a2M2�2 ∈ L1(�).

Moreover, we have

k(x, y)
[
F(un−1(y)) − F(w(y))

] ≤ 2�M ∈ L1(�).

Hence, using the Lebesgue dominated convergence theorem, we obtain

lim
n→∞ ‖un − w‖22 =

∫
�

(∫ a

−a
lim
n→∞ k(x, y)(F(un−1(y)) − F(w(y))) dy

)2

dx = 0.

The proof of Lemma 6 is now complete. ��
We are now in position to prove the three main theorems announced in Sect. 1.

Proof of Theorem 1 We know that 0 is a stationary solution of T . We claim that there is no
positive stationary solution. Suppose that there exists a positive stationary solution w of T .
It then follows, from Lemma 1, that w > 0 on �. Using assumption (6), we have

F(w(y)) = w(y)
F(w(y))

w(y)
< r0w(y), for all y ∈ �, (13)

where r0 = F ′(0). Thus,
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w(x) =
∫

�

k(x, y)F(w(y)) dy

< r0

∫
�

k(x, y)w(y) dy = T0(w)(x),
(14)

for all x ∈ �. We will now prove that there exists μ ∈ (0, 1), such that

w ≤ (1 − μ)T0(w) in �. (15)

Let α := supx∈�
w(x)

T0(w)(x) . Then there exists x0 ∈ �, such that

lim
x→x0

w(x)

T0(w)(x)
= α.

From (14), we get 0 < α ≤ 1. Our goal is to prove that 0 < α < 1. Suppose to the contrary
that α = 1. We then have

lim
x→x0

w(x) = lim
x→x0

T0(w)(x). (16)

But (13) and Lebesgue dominated convergence theorem lead to

lim
x→x0

w(x) = lim
x→x0

∫
�

k(x, y)F(w(y)) dy

=
∫

�

lim
x→x0

k(x, y)F(w(y)) dy

< r0

∫
�

lim
x→x0

k(x, y)w(y) dy

= lim
x→x0

r0

∫
�

k(x, y)w(y) dy

= lim
x→x0

T0(w)(x).

This contradicts (16) and thus α < 1. This proves the inequality (15). We then iterate to get

w ≤ (1 − μ)r0

∫
�

k(·, y)w(y) dy ≤ (1 − μ)2T 2
0 (w) ≤ … ≤ (1 − μ)nT n

0 (w),

for all n ∈ N.
Let us show that inf�(φ0) > 0, where φ0 is the principal eigenfunction of T0 associated

with the principal eigenvalue λ0. In fact, since k(x, y) > δ for all (x, y), then, for all x ∈ �

we have

φ0(x) = r0
λ0

∫
�

k(x, y)φ0(y) dy >
r0δ

λ0

∫
�

φ0(y) dy > 0,

because φ0 �≡ 0 and φ0 ≥ 0. Hence,

inf
�

φ0 ≥ r0δ

λ0

∫
�

φ0(y) dy > 0.

We recall that φ0 > 0 in � and it is unique up to multiplication by a scalar. Thus, we can
assume that w ≤ φ0 over � since inf� φ0 > 0. Therefore,

T0(w) ≤ r0

∫
�

k(x, y)w(y) dy ≤ r0

∫
�

k(x, y)φ0(y) dy = T0(φ0).

Suppose that, for all i ≤ n − 1, we have T i
0 (w) ≤ T i

0 (φ0). Then,
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T n
0 (w) ≤ r0

∫
�

k(x, y)T n−1
0 (w)(y) dy ≤ r0

∫
�

k(x, y)T n−1
0 (φ0)(y) dy ≤ T n

0 (φ0).

By induction, and using the assumption that λ0 ≤ 1, we then obtain that

w ≤ (1 − μ)nT n
0 (w) ≤ (1 − μ)nT n

0 (φ0) = (1 − μ)nλn0φ0 ≤ (1 − μ)nφ0,

for all n ∈ N. Since 0 < (1 − μ) < 1, passing to the limit as n → +∞ in the above
inequality yields w ≡ 0 in �, which is contradiction. This completes the proof of the first
result in the theorem.

We move now to the proof of the second result in this theorem. Let u0 ∈ X and fix
N > 2a�M . Then,

T (N ) =
∫ a

−a
k(x, y)F(N ) dy ≤ 2a�M < N .

From Lemma 5, it then follows that {T n(N )}n is decreasing. Since {T n(N )} is bounded
below by 0 uniformly, {T n(N )}n converges pointwise to w. Lemma 4 yields the existence
of w ∈ X . From the Lebesgue dominated convergence theorem, it follows that

T (w) = T
(
lim
n→∞ T n(N )

)
= lim

n→∞ T n+1(N ) = w.

The above means that w is stationary solution of T . Since λ0 ≤ 1, it follows, from the first
part of Theorem 1, that w = 0. Now,

0 ≤ u1 = T (u0) ≤ 2r�M < N .

Suppose that, for all i ≤ n, we have ui ≤ T i−1(N ). Then,

un+1 =
∫ a

−a
k(·, y)F(un(y)) dy ≤

∫ a

−a
k(·, y)F(T n−1(N )(y)) dy = T n(N ).

By induction, it then follows that

0 ≤ un ≤ T n−1(N ) for all n ∈ N.

Taking the limits in the last inequality yields that {un}n converges to 0 pointwise. From
Lemma 6, it follows that {un}n converges to 0 in L2(�). ��
Proof of Corollary 1 From Theorem 1, it suffices to prove that λ0 ≤ 1. First, we claim that
ϕ ∈ L∞(�). We have

0 < λ0ϕ(x) =
∫

�

k(x, y)ϕ(y) dy ≤ ‖k(x, ·)‖L2(�)‖ϕ‖L2(�)

≤ 2a�‖ϕ‖L2(�) < ∞, as ϕ ∈ L2(�).

(17)

Hence, our claim that ϕ ∈ L∞(�) follows. Choosing ϕ such that ‖ϕ‖L∞(�) = 1, we then
obtain

λ0 = ‖λ0ϕ‖L∞(�) = ‖T0(ϕ)‖L∞(�)

= sup
�

∣∣∣∣r0
∫

�

k(x, y)ϕ(y) dy

∣∣∣∣ ≤ sup
�

r0

∫
�

k(x, y)‖ϕ‖L∞(�) dy

= sup
�

r0

∫
�

k(x, y) dy ≤ sup
�

r0 = r0 ≤ 1.

This completes the proof of Corollary 1. ��
We are now in position to prove Theorem 2.
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Proof of Theorem 2 Here, we have the assumption that λ0 > 1 and F(0) = 0. Appealing to
Lemma 1 and Corollary 2, it suffices to find one positive stationary solution of T .

Let h > 0 such that r0
1+h > 1 and λ0

1+h > 1. Note that h exists because r0 > 1 and λ0 > 1.
Since

λ0φ0(x) = T0(φ0)(x) = r0

∫ a

−a
k(x, y)φ0(y) dy

≤ r0

(∫ a

−a
(k(x, y))2 dy

)1/2 (∫ a

−a
(φ0(y))

2 dy

)1/2

≤ r0
√
2a�‖φ0‖2,

it follows that φ0 is bounded above by some constant κ for all x .
We claim that the limit

lim
ε→0

F(εφ0(x))

εφ0(x)
= F ′(0)

is uniform in x ∈ �.

From the definition of r0 = F ′(0), we have that for any ζ > 0, there exists δ0 > 0, such
that

for |t | < δ0,

∣∣∣∣ F(t) − F(0)

t
− r0

∣∣∣∣ < ζ.

Let ε∗ > 0 be such that ε∗φ0(x) < ε∗κ < δ0. In other words, ε∗ is small enough so that δ0
is a uniform upper bound of ε∗φ0. Hence, the claim follows. Thus, for ζ = hr0

1+h , we can find
ε0 > 0, such that for all ε ∈ (0, ε0] we have∣∣∣∣ F(εφ0(x))

εφ0(x)
− r0

∣∣∣∣ <
hr0
1 + h

, for all x ∈ �.

Thus,

F(εφ0(x))

εφ0(x)
>

r0
1 + h

,

for all ε ∈ (0, ε0]. Then, for all ε ≤ ε0,

T (εφ0) =
∫

�

k(·, y)εφ0(y)
F(εφ0(y)

εφ0(y)
dy

≥ r0
1 + h

∫
�

k(·, y)εφ0(y) dy = 1

1 + h
T0(εφ0)

= λ0

1 + h
εφ0

> εφ0.

(18)

We claim that inf�(T (εφ0)− εφ0) > 0. Suppose that inf�(T (εφ0)− εφ0) = 0. Then, there
exists x0 ∈ �̄ such that

lim
x→x0

T (εφ0)(x) = lim
x→x0

εφ0(x) = α.

From (18), we obtain

α = lim
x→x0

T (εφ0)(x) ≥ lim
x→x0

λ0

1 + h
εφ0(x) ≥ lim

x→x0
εφ0(x) = α.

This implies that
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λ0

1 + h
α = α;

hence, α = 0. But,

0 = α = lim
x→x0

T (εφ0)(x)

= lim
x→x0

∫
�

k(x, y)F(εφ0(y)) dy ≥ δ

∫
�

F(εφ0(y)) dy > 0,

and so we have a contradiction. Therefore, inf�(T (εφ0) − εφ0) > 0.
Since the set of simple functions is dense in L∞(�), and εφ0 ∈ L∞(�), there exists a

sequence of simple functions { fn}n that decreases uniformly to εφ0. Thus, for

ζ0 := inf
�

(T (εφ0) − εφ0) > 0,

there exists nε ∈ N such that, for all n ≥ nε, we have | fn(x) − εφ0(x)| < ζ0 for all x ∈ �.
Then, as T is increasing (which follows from the fact that F is increasing), we get

T ( fn) ≥ T (εφ0) ≥ εφ0 + ζ0 > fn

on�, for all n ≥ nε. Since fn is a simple function, fn ∈ X .Now, for n ≥ nε we consider the
sequence {T m( fn)}m . Since T ( fn) ≥ T (εφ0) ≥ fn on�,Lemma 5 implies that {T m( fn)}m
is increasing for all ε ≤ ε0 and for all n ≥ nε. Thus, for 0 < ε < ε0, we have

T m( fn) =
∫ a

−a
k(·, y)F(T m−1( fn)(y)) dy ≤ 2a�M,

where � and M are the bounds of k and F respectively. Hence, {T m( fn)}m is uniformly
bounded and increasing. Therefore, there exists w ∈ X (by Lemma 4) such that w =
limm→∞ T m( fn) pointwise. The function w is a positive stationary solution of T since

T (w) = T
(
lim

m→∞ T m( fn)
)

= lim
m→∞ T (T m( fn)) = lim

m→∞ T m+1( fn) = w.

Note that we were able to interchange the limit and the integral in the above equation because
of the Lebesgue dominated convergence theorem.
We have

0 < δ

∫
�

F(u0(y))dy ≤ T (u0) ≤ u1 ≤ 2a�M . (19)

We fix N > 2a�M . Then, T (N ) ≤ 2a�M < N . Appealing to Lemma 5, we get {T n(N )}n
is decreasing and it is bounded uniformly by 0. From Lemma 4, there exists w∗ ∈ X such
that {T n(N )}n converges pointwise to w∗. This means that w∗ is a stationary solution of T .
Then, for ε ≤ ε0, we have

T ( fn) < N , for all n ≥ nε.

We know that F is increasing. By induction, it follows that

T n( fn) ≤ T n(N ).

Taking the limit on both sides, we get that w ≤ w∗. From the uniqueness of the non-zero
stationary solution of T in X , which was established in Corollary 2, we have w∗ = w �≡ 0.
From (19), we can find ε ∈ (0, ε0] such that

εφ0 ≤ εφ0 + ν ≤ u1 ≤ N in �,
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for some ν > 0. Then, there exists n0 such that, for all n ≥ n0, we have fn < εφ0 + ν in �.

Let n1 > max{n0, nε}. Then, fn1 ≤ u1 ≤ N . Suppose that, for all i ≤ n − 1, we have

T i ( fn1) ≤ ui+1 ≤ T i (N ).

Then, since F is increasing, we obtain

T n( fn1) =
∫

�

k(·, y)F(T n−1( fn1(y))) dy

≤
∫

�

k(·, y)F(un(y)) dy

≤
∫

�

k(·, y)F(T n−1(N )(y)) dy.

Hence,

T n( fn1) ≤ un+1 ≤ T n(N ), for all n ∈ N.

By passing to the limit as n → +∞, we get

w ≤ lim
n→∞ un+1 ≤ w.

Therefore, {un}n converges pointwise to w, which is the unique positive stationary solution
of T over �. From Lemma 6, we obtain that {un}n converges to w in L2(�). This completes
the proof of Theorem 2. ��

Proof of Theorem 3 In this proof, we use the assumption that F(0) > 0. We fix N > 2a�M
and note that

T (N ) =
∫ a

−a
k(x, y)F(N ) dy ≤ 2a�M < N .

Lemma 5 then yields that {T n(N )} is decreasing. Since {T n(N )} is bounded below by
0 uniformly, Lemma 4 leads to the existence of w ∈ X , such that {T n(N )}n converges
pointwise to w. That is, w is stationary solution of T . From Corollary 2, it follows that w is
the unique stationary solution of (1). We have

T (0)(x) =
∫

�

k(x, y)F(0) dy ≥ 2aδF(0) > 0 for all x ∈ �.

From Lemma 5, it follows that {T n(0)}n is increasing. Since {T n(0)}n is uniformly bounded
above by N , Lemma 4 then yields the existence of w0 ∈ X , such that {T n(N )}n converges
pointwise to w0. This means that w0 is stationary solution of T . Corollary 2 yields that
w0 = w, the unique stationary solution of (1). Also, we have

N ≥ T (u0) ≥ 0.

Suppose that it holds true that, for all i ≤ n,

T n−1(N ) ≥ un ≥ T n−1(0).

We compute
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T n(N )(x) =
∫

�

k(x, y)F(T n−1(N )(y)) dy

≥
∫

�

k(x, y)F(un(y)) dy

= un+1(x)

≥
∫

�

k(x, y)F(T n−1(0)(y)) dy = T n(0)(x).

Thus,

T n−1(N ) ≥ un ≥ T n−1(0),

for all n ∈ N. Taking the limits in the above inequality, we obtain that

w ≥ lim
n→∞ un ≥ w.

Hence {un}n converges to w pointwise. From Lemma 6, it follows that {un}n converges to w

in L2(�). ��
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