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1. Introduction and main results

In this paper, we consider the following reaction-advection-diffusion equation

au ou
E:Au—i—q(x)a— +f(u), forallt eR, (x,y) € R?, (1.1)
y

where the advection coefficient x — q(x) belongs to C*(R) for some § > 0, and satisfies

L
VxeR, q(x+1L)=qx and / qgx)dx=0 (1.2)
0

for some L > 0.The second condition for q is a normalization condition. The nonlinearity f is assumed to satisfy the following
conditions

f is defined on R, Lipschitz continuous, and f = 0inR \ (0, 1),
f is a concave function of class c*¥in o, 1], (1.3)
f'(0)>0, f'(1) <0, and f(s) >0 forallse (0,1),

where f is assumed to be right and left differentiable at 0 and 1, respectively (f'(0) and f'(1) then stand for the right and
left derivatives at 0 and 1). A typical example of such a function f is the quadratic nonlinearity f (u) = u(1 — u) which was
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Fig. 1. The lower and upper cones CDZ/“ and C‘Iﬁ_,.

initially considered by Fisher [1] and Kolmogorov et al. [2]. Eq. (1.1) arises in various combustion and biological models, such
as population dynamics and gene developments where u stands for the relative concentration of some substance (see [3-5]
for details). In combustion, Eq. (1.1) arises in models of flames in a periodic shear flow, like in simplified Bunsen flames
models with a perforated burner, and u stands for the normalized temperature.

We are interested in the traveling front solutions of (1.1), which are classical solutions of the form

u(t, x,y) = ¢(x,y +ct)
for all (t, x,y) € R x R?, and for some positive constant ¢ which denotes the speed of propagation in the vertical direction
—y. Thus, we are led to the following elliptic equation

A+ (q(x) — )dyp +f(¢p) =0 forall (x,y) € R?, (1.4)

where the notation d,¢ means the partial derivative of the function ¢ with respect to the variable y.
We assume that the solutions ¢ of Eq. (1.4) are normalized so that 0 < ¢ < 1. We look in this paper for solutions of (1.4)
which satisfy the following “conical” conditions at infinity

lim ( sup ¢>(x,y)) =0,

I——o00

(X’Y)ch;.ﬂ.l (1 5)
lim ( inf  $x, y)) -1,
=400 (X*—V)ecafﬂ,l

where « and 8 are givenin (0, ) such that« + 8 < 7 and the lower and upper cones COZB,, and CO‘:B,, are defined as follows:

Definition 1.1. For each real number [, the lower cone C, 4 , is defined by

Copt = {x,y) € R?,y < xcota + [wheneverx < 0andy < —xcot 8 + | whenever x > 0}

o

and then the upper cone C;“ﬁ,, is defined by

+ o =
Cot,ﬁ,l =R? \ Ca,ﬁ,l’

see Fig. 1 for a geometrical description.

Because of the strong elliptic maximum principle, a solution ¢ of Eq. (1.4) that is defined in the whole plane R? and
satisfies 0 < ¢ < 1, is either identically equal to O or 1, or 0 < ¢(x, y) < 1forall (x, y) € R2. By the “conical” conditions at
infinity (1.5), only the case of 0 < ¢(x, y) < 1forall (x, y) € R? will then be considered in the present paper.

In order to motivate our study, let us first recall a very simple case of traveling fronts for the reaction-diffusion (with no
advection) equation

ou

3~ Au=f@ (1.6)
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in the whole plane R2. It is well known from [2] that for any ¢ > 24/f7(0), the above equation has a planar traveling front
moving in an arbitrarily given unit direction —e, having the form u(t,x) = ¢(x - e + ct) and satisfying the conditions
¢(—o0) = 0 and ¢(+00) = 1. Recently, the problems about curved traveling fronts of the reaction-diffusion (with no
advection) Eq. (1.6) equipped with the conical conditions at infinity of type (1.5) with « = S have been the subject of
intensive study by many authors, for various types of nonlinearities. For example, Bonnet and Hamel [6] considered such
type of problems with a “combustion” nonlinearity f, namely,

30 € (0,1), f=00n[0,6] and f(1) <O,

which comes from the model of premixed Bunsen flames. They proved the existence of curved traveling fronts and gave
an explicit formula that relates the speed of propagation and the angle of the tip of the flame. One can also find some
generalizations of the above results and further qualitative properties in [7,8]. For the case of bistable nonlinearity f
satisfying

{396(0,1), fO=fO)=fM1=0 f(O <0  f(1)<0  f(©®) >0,
f <0 on(0,0)U(1,+00), f>0 on(—o00,0)U(H,1),

Hamel et al. [9,10] and Ninomiya and Taniguchi [11,12] proved existence and uniqueness results and qualitative properties
of such kind of conical fronts (see also [13-15] for further stability results and the study of pyramidal fronts). For KPP
nonlinearities, conical and more general curved fronts are also known to exist for Eq. (1.6) (see [16]).

In addition to the above mentioned literature, some works have been devoted to the study of the reaction-advection-
diffusion equations of the type (1.1). A well-known paper about this issue is the one by Berestycki and Nirenberg [17], where
the authors set the reaction-advection-diffusion equation in a straight infinite cylinder and consider the traveling fronts
of the reaction-advection-diffusion equation satisfying Neumann no-flux conditions on the boundary of the cylinder and
approaching 0 and 1 at both infinite sides of the cylinder respectively. Later, Berestycki and Hamel [ 18] and Weinberger [19]
investigated reaction-diffusion equations with periodic advection in a very general framework, and proved the existence of
pulsating traveling fronts (some of their results will be recalled below).

However, as far as we know, except recent works of Haragus and Scheel [20,21] on some equations of the type (1.4) with
« and B close to /2, the reaction-advection-diffusion equation of type (1.1) and its corresponding elliptic equation (1.4)
equipped with conical conditions (1.5) have not been studied yet for general angles & and 8 and for general periodic shear
flow. The purpose of this paper is to prove the existence, nonexistence and monotonicity results for the solutions of the
semilinear elliptic equation (1.4) with the non-standard conical conditions at infinity (1.5). Although some generalizations
are certainly possible, this paper is the first one containing existence and qualitative properties for reaction-diffusion
models of the type (1.4) in heterogeneous media and with non-almost-planar conical conditions at infinity. In fact, the
main difficulties in the present paper arise from these conical conditions at infinity and from the fact that the domain is not
compact in the direction orthogonal to the direction of propagation.

Before stating our main results of this paper, we first give the following notations.

Notation 1.1. Let y € (0,7/2),q = q(X) and f = f(u) be two functions satisfying (1.2) and (1.3) respectively. Let
M = (myj)1<i j<» be a positive definite symmetric matrix, that is

3 >0, VEER, Y miEg > alil (1.7)
1<i,j<2
where £ = 512 + 522 for any £ = (£1,&) € R2 Throughout this paper, Cntl,qsiny,f > 0 denotes the minimal

speed of propagation of traveling fronts 0 < u < 1 in the direction —Y in the variables (X, Y) for the following
reaction-advection-diffusion problem

ou u

e = div(MVu) + g(X) sinya—y+f(u), teR, X,Y) € R?,
Ut 4+, X+LY)=ult+7,X,Y)=ult,X,Y +c1), (t,7,X,Y)€R?x R?, (1.8)
u(t5X7Y) — Oa u(t,X,Y) I ]7

Y——o00 Y—+4o00

where the above limits hold locally in ¢ and uniformly in X. In other words, such fronts exist if and only if ¢ > ¢y, ., ;- The
existence of this minimal speed cy;. qsiny.f and further qualitative properties of such fronts, for even more general periodic

equations, follow from [18,22-24,19]. More precisely, given any L’ > 0, pulsating traveling fronts - in the sense of Definition
1.12 of [18] - such thatu(t + L'/c, X + L, Y) = u(t +L'/c,X,Y) = u(t, X, Y + L) for all (t, X, Y) € R? exist if and only if

c> CI’\k/,,qsmy!“, (>0) (see Theorem 1.14 in [ 18], by viewing the flow q(X) sin y as an L’-periodic function in the variable Y);
actually, the speeds cy; qsiny [ do not depend on L’ (that is, c;j,.qsiny‘“, = c;j,’qsmy.f for all ' > 0) and the fronts satisfy the

second property of (1.8) from the variational formulas of the speeds and from the uniqueness results stated in Theorem 1.1
in[22] and Theorem 1.1 in[24]. The existence and qualitative properties for problem (1.8) could also be viewed as extensions
of some results of [17] for problems set in infinite cylinders, by replacing the cross section of the cylinder in the variable X
with periodicity conditions.
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Our first main result in this paper is the following

Theorem 1.1. Let q(x) be a globally C"*(R) function (for some 8§ > 0) satisfying (1.2). Let f be a nonlinearity fulfilling (1.3).
Then, for any given « and B in (0, &) such that « + B < 7, there exists a positive real number c* such that

(i) foreach ¢ > c*, the problem (1.4)-(1.5) admits a solution (c, ¢);
(ii) if ¢ < c*, the problem (1.4)-(1.5) has no solution (c, ¢).

Moreover, under the Notation 1.1, the value of c* is given by

Chgsinaf CBgsi
c* — max ( ,q.smot,f ) ,t{smﬂ,f) , (1'9)
sino sin 8
where
. 1 —cosua 1 cos B
A= |:_ cosa 1 } and B= [cos,ﬁ 1 ] . (1.10)

Our second main result is concerned with the monotonicity of the fronts in the direction of propagation.

Theorem 1.2. Under the assumptions of Theorem 1.1, if a pair (c, ¢) solves the problem (1.4)-(1.5), then d,¢(x, y) > 0 for all
(x,y) € R%. Consequently, the traveling front solution u(t, x, y) = ¢(x, y + ct) of (1.1) is increasing in time t.

Remark 1.1. For the case of « = 8 = /2, the above results have been proved in [18,17,19], in which case ¢* = c,’fq.f is
the minimal speed of traveling fronts for problem (1.8) with identity matrix M = I. The interest of the present work 1s to
generalize them to the case of conical asymptotic conditions (1.5) with angles « and 8 which may be smaller or larger than
7 /2. Compared to the rather large literature devoted to the case « = 8 = /2 (see also below), this paper is the first step in
the understanding of truly curved fronts for the heterogeneous equations of the type (1.4). The condition « + 8 < m which
is used in the construction of the fronts can be viewed as a global concavity of the level sets of the fronts with respect to the
variable y. It is unclear that this condition is necessary in general. Actually, it follows from Section 4 that Theorem 1.2 still
holds for any « and 8 in (0, 7).

The value of c* in Theorem 1.1 is given in terms of the known minimal speeds of propagation of “planar” pulsating
traveling fronts for two auxiliary (left and right) problems of type (1.8). Throughout the paper, we use the word “planar” to
mean that, for problem (1.8), any level set of u is trapped between two parallel planes. A rigorous result about the existence
of the minimal speed of propagation of pulsating traveling fronts in general periodic domains was given in [18]. Several
variational formulas for the minimal speed of propagation have been given by Berestycki et al. [22], El Smaily [25] and
Weinberger [19] and much work has been devoted to the study of the dependence of the “planar” minimal speed on the
advection, diffusion, reaction and the geometry of the domain (see e.g. [22,26-32]).

In the following theorem, we study the behaviors of the conical minimal speed c* of Theorem 1.1 in some asymptotic
regimes and we obtain a result about the homogenized speed. To make the presentation simpler, we introduce a general
notation for the conical minimal speed: given an advection g and a reaction f satisfying (1.2) and (1.3) respectively, and
given an arbitrary p > 0, we consider the problem

pAP + (q(x) — ¢)dyp +f(¢) =0 forall (x,y) € R, (1.11)

with the conical conditions (1.5) and we denote by c*(p, g, f) the conical minimal speed of problem (1.11)-(1.5), whose
existence follows from Theorem 1.1. In other words, a solution (c, ¢) of (1.11) satisfying (1.5) exists if and only if ¢ >
c*(p, q, f). Furthermore, it follows from Theorem 1.1 that the “conical” minimal speed can be expressed in terms of the
“left and right” planar minimal speeds as follows

c*, c*r
c*(p,q,f) = max< pA’f’sma’f, pB’,qsmﬁ'f) . (1.12)
sino sin 8

In the above notation of conical minimal speed, we use the brackets (i.e. c*(, -, -)) while subscripts are used in the notation
of the “planar” minimal speed.
Theorem 1.3. Let « and B be in (0, i) such that o« + B < m. Assume that the function f fulfills (1.3) and that the advection q
is a globally C-* (R) function (for some 8 > 0) satisfying (1.2).

(i) Large diffusion or small reaction with a not too large/sufficiently small advection. For each p > 0, we have

vy s 12 fim C@MET)  2/60

m—0+ Jm " min(sine, sinB)’

(1.13)
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and
c*(mp, m”q, 2./ p0f (0
VOo<y =<1/2, lim (mp, 4. ]) = — .pf(.) . (1.14)
m—>~+00 Jm min(sin «, sin B)
(ii) Large advection. For each p > 0, the following limit holds
L 2
c*(p, mq, w
lim &M max fOLL (1.15)
m—+00 m weHL (R)\{0),L-periodic, fo w?
p"w/HZZ(O,L)Sf/m)"wHiZ(O_L)
Moreover,
c*(p, mq, & c* ,mq, f) x
lim < lim 7('0 g f)) = lim ( lim (p. mg.J) ﬁ)
50+ \ m—>+oo mﬁ u——+o00 \ m—+oo m
L
20 w
= 1) X max ff’iq (1.16)
VoL wen) @)oy,L-periodic W ll12(0,1)
and
c*(e, mq, ) . C"(p, mgq,
lim ( lim M) = lim < lim M) = maxq. (1.17)
e—0t \m—+oo m n——+o0 \ m—-+oo m [0,L]

(iii) Homogenized speed. Assume here that q is 1-periodic and its average is zero. For each L > 0, let q,(x) = q (x/L) for all
x € R. Then, for each p > 0,

2+/pf'(0)

- (1.18)
min(sin «, sin 8)

lim ¢*(p, qi, f) =
L—0t

Outline of the rest of the paper. This paper is organized as follows. In Section 2, we prove the existence of a curved traveling
front to the problem (1.4)-(1.5) whenever the speed ¢ > c* (the first part of Theorem 1.1). In Section 3, using some results
about spreading phenomena, we prove that the problem (1.4)-(1.5) has no solution (c, ¢») as soon as ¢ < c* (the second part
of Theorem 1.1). In Section 4, we first establish a generalized comparison principle for some elliptic equations in unbounded
domains having the form of “upper cones”. Then, we give the proof of Theorem 1.2 by using this generalized comparison
principle together with suitable estimates of the quantity d,¢ /¢ in lower cones and with some sliding techniques on the
solutions in the y-variable. Lastly, Section 5 is concerned with the proof of Theorem 1.3.

2. Existence of a curved front (c, ¢) forall c > c*

In this section, we prove the existence of a curved front (c, ¢) to the problem (1.4)-(1.5) whenever ¢ > c* (the first

item of Theorem 1.1). The main tool is the sub/supersolution method. Roughly speaking, we construct a subsolution and a
supersolution for our problem by mixing, in different ways, two pulsating traveling fronts coming from opposite sides (left
and right) and having different angles with respect to the vertical axis but having the same vertical speed in some sense.
Proof of part (i) of Theorem 1.1. We perform this proof in two steps.
Step 1: Construction of a subsolution. For any given y € (0, ), any smooth function q satisfying (1.2), any nonlinearity
f fulfilling (1.3) and any constant matrix M = (m;j)1<; j<» satisfying (1.7), we consider the problem (1.8). As recalled in
the introduction, there exists a minimal speed cy , ,,, ; such that the problem (1.8) admits a traveling front (c, u) for each
€ = Cy gsiny s and nosolutionforc < ¢y gy, r- Moreover, itis known that any such front uis increasing in t. For any solution
(c, u) of the problem (1.8), if we denote u(t, X, Y) = ¢(X, Y + ct), then the pair (c, ¢) solves the following problem

div(MVg) + (q(X)siny — c)dyp +f(p) =0, (X,Y) € R?,
0X,Y) Y—> 0, oX,Y) Y—) 1, uniformlyinX € R, (2.1)
——00 —+o0

eX+LY)=¢X,Y), X,Y)eR.

Since u is increasing in t, we conclude that ¢ is increasing in its second variable, namely Y.

For any given 0 < «, B < 7 such that @ + B8 < 7, we define the matrices A and B as in (1.10). By choosing M = A and
y = « in (2.1), then there exists a positive constant c,’;qsim’f such that the problem (2.1) admits a solution (c,, ¢ ) if and
only if ¢y > € ;5ing - Similarly, if we choose M = Band y = f in (2.1), then there exists a positive constant ¢y , ;, 5  such

that the problem (2.1) admits a solution (cg, ¢g) if and only if cg > C;qsinﬁ,f‘ Consequently, for a given ¢ > c*, where c* is
defined by (1.9), there exist (cy, o) and (cg, @) as above and such that

= 2 > c* (2.2)
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Now, we give a candidate for a subsolution of the problem (1.4)-(1.5) as follows

$(x,y) = max (g, (x, —xcosa +ysina), gp(x,xcos B +ysin )) . (2.3)

In fact, by (2.1), it is easy to verify that (c, ¢) defined by (2.2) and (2.3) is a subsolution of Eq. (1.4). Indeed, both functions
in the max solve (1.4). For instance, if we set ¢1 (X, y) = @4 (X, —x cos o + y sin ), then

Ag1 + (q(%) — ©)dyg1 + f (1) = div(AVee) + (q(X) — ) sinady@e + f(@a) =0

in R?, where the quantities involving ¢, are taken values at the point (x, —x cos « + y sin ). Moreover, by construction and
sincea + B < 7, gy (-, —00) = @g(-, —00) = 0and @, (-, +00) = @g(-, +00) = 1, we know that ¢ satisfies the “conical”

conditions at infinity (1.5). Notice that the condition @ + 8 < 7 is necessary for this condition (1.5) to be fulfilled by ¢ and
then for the present sub- and supersolution (in Step 2) method to hold.

Step 2: Construction of a supersolution. As we have done in the first step, for any ¢ > c¢*, we consider the same front (c,, @)
as in step 1, which solves the problem (2.1) for M = Aand y = «, and the same front (cg, ¢p) as in step 1, which solves the
problem (2.1) for M = Band y = f such that (2.2) holds. We claim that the following function

¢(x,y) = min (py (x, —x cos o + y sina) + gg(x, xcos B + ysin B), 1) (2.4)

is a supersolution of Eq. (1.4). Obviously, we only need to check the case of ¢, (x, —xcosa + ysina) + @g(x, xcos 8 +
ysing) < 1.
We first notice that a function f = f(s) that satisfies the conditions (1.3) is sub-additive in the interval [0, 1]. That is
f(s+1t) <f(s)+f(t), forallO<s,t<1.
When ¢ < 1, then by (2.1), we have,

Ad + @(X) = )3y$ + [ () = f(9u + pp) + diV(AVg,) + (@(X) — ©) sinady g,
+div(BVeg) + (q(x) — ¢) sin Bdy¢g
= f(pa + ¢p) — f(@a) — f(@p)
<0,
where the quantities involving ¢, (resp. ¢g) are taken values at the point (x, —x cos & +y sina) (resp. (x, x cos 8 +y sin 8)).
Thus, (c, ¢) is a supersolution of Eq. (1.4). Furthermore, the function ¢ satisfies the conical conditions (1.5) at infinity since

a+p<m. _
Finally, since0 < ¢ < ¢ < 1in R?, we conclude that, for any ¢ > c*, the problem (1.4)-(1.5) admits a curved front

(c,¢)suchthatg < ¢ < ¢. The proof of part (i) of Theorem 1.1 is then complete. O

Notice that it follows from the above construction that ¢ is close to the oblique “planar” fronts ¢, (x, —x cos @ + y sin )
and g (x, x cos B + y sin B) asymptotically on the “left” and “right”. More precisely,

tim ( sup |¢(xy) — gu(x.xcos p+ysin ) =0

A——00 \y<xcota+A

and

lim ( sup  |p(x,y) — pu (X, —Xx COS @@ +ysinoz)|> =0.

A——o0 y<—xcot B+A
Remark 2.1. To complete this section, consider here the special “symmetric” case. Namely, under the notations of
Theorem 1.1, assume « = 8 and q(x) = q(—x) for all x € R. Then we claim that

* *
. Cagsinaf _ CBgsingf
sina sing

Indeed, let (¢; ;g s> ¥o (X, Y)) be a solution of the following problem

{div(AV(p;‘(X, Y)) + @O Sine — € o )IPLX, V) +F(@E(X, V) =0 inR%, 25)

(X, Y) — 0, ¢ (X,Y) — 1, uniformlyinX € R.
Y——o00 Y—+o0

Define ¥ (X, Y) := ¢} (=X, Y) forall (X, Y) € R% Since @ = B and q(X) = q(—X) for all X € R, then the pair (c,’{yqsina’f, vr)
is a solution of the following problem

diVBYY (X, Y)) + (@X) sina — ¢ yna )W X, V) +FF X, ¥) =0 inR2,
Y(X,Y) L0 Y(X,Y) B 1, uniformlyinX € R. (2.6)
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It follows from [18] that C;,qsina,f is not smaller than the minimal speed of propagation corresponding to the
reaction-advection-diffusion equation having B as the diffusion matrix, gsine = gsin 8 as the advection and f as the
reaction term. That is, ¢} o sinas = Ch.qu sin pr- SiMilarly, we can prove ¢z 5 ¢ > € ¢4ine s Which leads to the equality
between these two minimal speeds.

3. Nonexistence of conical fronts (c, ¢) forc < c*

In this section, we prove that the problem (1.4)-(1.5) has no solution (c, ¢) if c < ¢* (the second item of Theorem 1.1).
The proof mainly lies on a spreading result given by Weinberger [19].

Proof of part (ii) of Theorem 1.1. Suppose to the contrary that the problem (1.4)-(1.5) admits a solution ¢ with a speed
¢ < c*, where c* is the value defined in (1.9). Without loss of generality, we can assume that

Ciosi Ch o
= A,?sma,f > B,q.smﬁ,f )
sino sin 8

Under this assumption, there exists a positive constant d such that
csine < d < 4 gqing s (3.1)

Write ¢ (x,y) = @(x, —xcosa + ysina) for all (x, y) € R2. Then, the function ¢ (X, Y) is well defined and it solves the
following equation

div(AVe) + (q(X) — ¢) sinadyg + f(p) =0, forall (X,Y) € R?, (3.2)

where A is the matrix defined in the second section. Moreover, it follows from the definition of ¢ and the “conical” conditions
at infinity (1.5) that

lim ( sup w(x,y)) —o. (3.3)
Y—>—00 \(x v)er2,x<0

We mention that taking the supremum in the above limit over the set {X < 0} is just to insure that (X, Y) stays in
, for some [ which goes to —oo as Y — —oo and as a consequence we can use the conical conditions. If we let
u(t X Y) = ¢(X, Y + ct sinw), then by (3.2), the function u solves the following parabolic equation

3 9
87’: = div(AVa) + q(X) sinaa—; +fQ), forall(t,X,Y)eR x B2, (3.4)

Let ilo(X, Y) be a function of class C®*(R?) (for some positive ) such that

VX eR,VY <0, {p(X,Y)=0,

ElYQ > 0, inf flo(x, Y) > 0, (3 5)
(X,Y)eR2,Y>Yy .
V(X,Y) € R, 0 <p(X,Y) <u,X,Y).

Let ii(t, X, Y) be a classical solution of the following Cauchy problem

A

au ot
Frie = div(AVi) + q(X) smaa— +f(@), forallt >0, (X,Y)eR?
(0, X,Y) = lig(X, Y), forall (X,Y) e R%.

Under the conditions (3.5) on ilp and the assumptions (1.3) on the nonlinearity f, the results of Weinberger [19] imply that
for any given r > 0, we have

: ~ TN ’ *
lim sup u(t,X,Y—c't)=0, foreachc > ¢ gy
=+ |y|<r XeR

and

lim  inf Rfl(t,X, Y—c't)y=1, foreachc’ < ¢} sinas- (36)

t—>+o0 |Y|<r,Xe

On the other hand, since 0 < (0, X, Y) < u(0, X, Y) in R? and both u and i solve the same parabolic equation (3.4), the
parabolic maximum principle implies that

i(t,X,Y) <u(t,X,Y) forallt >0and (X,Y) € R% (3.7)
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The assumption that (c sina — d) < 0 implies that Y + (csina — d)t - —oo ast — +oo for |Y| < r. We conclude from
(3.1),(3.3) and (3.7) that for any r > 0, all limits below exist and

0< lim inf a@.X.Y—d)< lim - inf a(t.X.Y —do

t—+o00 |Y|<r,XeR t—>—+o00 |Y|<r X<

< lim inf  u(t,X,Y —dt)

t—+o00 |Y|<r,X<0

lim inf O(p(X, Y + (csina — d)t)

t—>-+00 |Y|<r.X<

< lim sup @X,Y 4+ (csina — d)t)

t=400 y|<r.X<0
=0,

which contradicts (3.6) with ¢’ = d and eventually completes the proof. O

4. Monotonicity with respect to y

This section is devoted to the proof of Theorem 1.2. To furnish this goal, we need to establish a generalized comparison
principle in unbounded domains of the form C; Bl Then, together with further estimates on the behavior of any solution ¢

of the problem (1.4)-(1.5) in the lower cone Ca_‘ﬁ‘, and with some “sliding techniques” which are similar to those done by
Berestycki and Nirenberg [33], we prove that the solution ¢ is increasing in y.
Let us first state the following proposition which is an important step to prove the main result in this section.

Proposition 4.1. Let o and B belong to (0, 7). If (c, ¢) is a solution of (1.4)-(1.5), then

9
A:Hmm< inf yM&”)>o

= =00 \ (xyrecy 4, d(x,y)

Proof. Similar to the discussion in [18], we get from standard Schauder interior estimates and Harnack inequalities that
there exists a constant K such that

V(x.y) €R*, |yp(x.y)| <Kp(x.y) and [dp(x,y)| < Kp(x.y). (4.1)
Consequently, the function dy¢ /¢ is globally bounded in R?. Denote by
X, y)

A :=liminf inf
[—>—00 (®Y)ECy 4 ox,y)

and let {I,}nen and {(x,, ¥n) }nen be two sequences such that (x,, y,) € Cozﬁ’,n foralln e N, I, > —ocoasn — 400, and

8y‘ls(xn 2 Vn)
@ (Xn, Yn)
Next, we will proceed in several steps to prove that A > 0.
Step 1: From (1.4) to a linear elliptic equation. For eachn € N, let

P(X +Xn, ¥ + yn)
& (Xns Yn)
Owing to Eq. (1.4) satisfied by ¢, we know that each function ¢"(x, y) satisfies the following equation
(@ +xn, Y+ Yn))
¢+ Xn, ¥ + Yn)
for all (x,y) € R?. Moreover, for any given (x, y) € R?, it follows from (1.5) that the sequence ¢(x + X,,, ¥ + y») — 0 as

n — 400 (since (x,, y,) € Copiy foreachn € Nand [, - —o0 asn — +00). Noticing that f (0) = 0, then we have
f@(X+ X0,y +Yn))
GX+Xn, ¥ + Yn)

as n — 4-o0. Since the function q is L-periodic, we can construct a sequence {X, } <y such that X, € [0, L] for alln € N and

— A asn — +oo.

P (x,y) = for all (x,y) € R%.

AP"(x,y) + (q(x + xp) — ©)dyp" (x,y) + ¢"(x,y) =0

— f'(0)

VneN, VXeR, @¢,(x) =qx+x,)=qx+Xx,).

Consequently, there exists a point x, € [0, L] such that X, — X, asn — +o00 (up to extraction of some subsequence), and
the functions g, (x) converge uniformly to q(x 4+ X.,). Observe also that the functions ¢" are locally bounded in R?, from the
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estimates (4.1). From the standard elliptic estimates, the functions ¢" converge in all Wli’cp (R?) weak (for 1 < p < o0), up
to extraction of another subsequence, to a nonnegative function ¢* which satisfies the following linear elliptic equation

AP + (@(X + Xo0) — €)™ +f/(0)¢™ =0 inR>. (4.2)

Furthermore, by the definition of ¢", we have ¢*°(0, 0) = 1. Then, the strong maximum principle yields that the function
¢ is positive everywhere in R?.

Step 2: The form of ¢°. For any given (x, y) € R?, we have
O+ X0,y +Yn)  HPX+Xn, Y+ Yn)
& (Xn, Yn) G+ Xn, ¥+ Yn)
for all n € N. Referring to the definition of A, one can then conclude that for any given (x, y) € R?,
oyd(x + X,

liminf 22X F XY F ),

n—>+00 (X + X, ¥ + Yn)
Passing to the limit as n — +o00 in (4.3) leads to

WP"(x,y) = x ¢"(x,y) (4.3)

WPT(x,y) = Ap™(x,y), forall (x,y) € R>. (4.4)
Furthermore,
. Oy (Xa, Yn)
8,0°(0,0) = lim 3,¢"(0,0) = lim """ — A = A¢™>(0, 0). (4.5)
y¢ n—+4o00 y¢ n—+00 {b(xnv}’n) ¢
Set
0y (X,
z®((x,y) = Yo xy) forall (x, y) € R2.
P>(x,y)

The function z*°(x, y) is then a classical solution of the equation

Az® 4+ w-Vz® =0 inR?, (4.6)
where
0> _ 0,0
w=wky = <2 ;oo 2 fpoo +q(><+xoo)—6>

is a globally bounded vector field defined in R? (see (4.1)). It follows from (4.4) and (4.5) that
z%°0,0) = A and z®(x,y) > A forall (x,y) € R,

Obviously, the constant function A also solves (4.6). Then, it follows from the strong maximum principle that z*°(x, y) = A
for all (x, y) € R?, and thus,

Vi y) €R: 6% y) =eMY(x) > 0

for some positive function i (x) defined in R. Owing to (4.2), the function 1 (x) is then a classical solution of the following
ordinary differential equation

Y (%) + (A% + Aq(x + x0) —cA+f'(0)) y(x) =0 forallx € R. (4.7)
Step 3: From (4.7) to an eigenvalue problem. Let
Y x+D
= inf ———=
xR Y (X)

where L is the period of q (see (1.2)). From (4.1), the function v satisfies |y (x)| < |[Ky (x)| for allx € R and y is then a real
number. Let {x],},ey be a sequence in R such that

V(x, + L)
v (xp)
Define a sequence of functions {y" (x) }nen by

V(X +x,)
v (x;)

— U asn — +00.

forallx € R.

Y'(x) =
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Then, for each n € N, the function ¥/" (x) satisfies
WM () + (A% + Aq(X +x, + %o5) — A +£'(0)) Y"(X) = 0

forallx € R.
Similar to the discussion in Step 1 and also due to the L-periodicity of q, it easily follows that, up to extraction of a
subsequence, ¥" — ¥ in C2_(R?) and

q(- + X, + %o0) = q(- + %)) asn — +oo, uniformly on each compact of R,

for some x_, € R. Furthermore, the function ¥*° is a nonnegative classical solution of the following equation

(W) + (A* + Aqx + X)) —cA+f'(0)) ¥ =0 inR. (4.8)

Since ¥"(0) = 1 foralln € N, we have > (0) = 1. Then, the strong maximum principle yields that 1*°(x) > 0 for all
x e R.
Now, we consider a new function

heo = 2D
Yo x)

which is defined in R. By the definition of « and ", we have

Y'x+1)  Yx+x,+1) -

Y(x) Yx+x) T

Passing to the limit as n — +o0, one gets h(x) > u for all x € R. Moreover,

o 1 noy e YD
v (L)_nl}r-ll—‘lool// (L)_nllr—bl:loo W(x;]) a

’

u, foralln e Nandx € R.

Denote by
v(x) = Y+ L) — uy>(x) forallx € R.

Then, the function v is nonnegative and satisfies the linear elliptic equation (4.8) with the property v(0) = 0. Thus, the
strong maximum principle yields that v = 0 in R, and consequently, h(x) = u > 0in R (since ¥*°(x) > 0 for all x € R).
Define @ = L~" In . If we write > (x) = e®™@(x) for all x € R, then it follows from > (x + L) = u > (x) that

VxeR, o¢kx+1L) =ek).

After replacing 1> by e?*¢ in (4.8), we conclude that the function g is a classical solution of the following problem

@' +20¢ + 0%+ (A* —cA+qx+ X )A+f(0)p=0 inR,
¢ is L-periodic, (4.9)
Vx e R, ¢(x) >0.

For each A € R, we define an elliptic operator as follows

2

Ly, == —+20£+[92+Az—ck+q(x+x’ A+ f(0)]
’ dx? dx o

acting on the set
E:={g(x) € C](R); g(x + L) = g(x) for all x € R}.

We denote by ks (1) and ¢?* the principal eigenvalue and the corresponding principal eigenfunction of this operator. In
addition to the existence, we also have the uniqueness (up to a multiplication by any non-zero constant) of the principal
eigenfunction ¢?* which keeps sign over R and solves the following problem

{Le.w“ =ko(M)e?* inR

. . 4.1
¢%* is L-periodic. (410)

From (4.9) and the above discussions, we conclude that, for A = A, ky(A) = 0 is the principal eigenvalue and the
function ¢ is the corresponding eigenfunction. In other words, A is a solution of the equation kg (A) = 0.

Now, we consider the function R > A +— kg(A). It follows from Proposition 5.7 in [18] that L +— ky(X) is convex.
Moreover, for A = 0, the principal eigenfunction ¢’ is a constant function, say ¢’° = 1 (due to the uniqueness up to

multiplication by a constant), and the principal eigenvalue is
kg (0) = 6% + f(0) > 0.

Thus, in order to obtain that A > 0, it suffices to prove that %9 (0) < 0 (see Fig. 2).
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ARo(A)

ko(0) = 6% + f(0)

Fig. 2. The function A — kg ().

Since ¢?** is L-periodic for each A € R, we then integrate Eq. (4.10) with respect to x over [0, L] to obtain

L L L
kg(x)/ " ydx = (6% +f/(0)) / we-*(x)dx+/\2/ % (x)dx
0 0 0

"k (0)

L L
—CA/ <p9-l(x)dx+1/ q(x + X, )¢ (x)dx (4.11)
0 0

for all A € R. Owing to standard elliptic estimates, the family {¢?*}; <z, when normalized by maxg ¢?* = 1, converges in
Cﬁ)c (R) to the constant function ¢%° = 1 as A converges to 0. Passing to the limit as A — 0in (4.11), one consequently gets

I ko(A) — kg(0)
im —————— =

1t ,
lim -, —c+ I/o qx + x,.) dx.

However, by the assumptions (1.2) on g, we know that

L L
/ qx +x) dx = / q(x)dx = 0.
0 0

Therefore,

dk@ (0) - ¢
v

But, from part (ii) of Theorem 1.1, the speed c satisfies

o Cr o
c> c* = max A,t{sma,f i B,q{smﬁ,f - 0.
sina sin 8
Thus, % (0) < 0 and that completes the proof of Proposition 4.1. O
In the following, we are going to establish a generalized comparison principle which will be an important tool in the proof
of Theorem 1.2. Before stating this result, let us first introduce some notations and assumptions that we need in our setting.

Foreachl € R, a, B € (0, ), we consider A(x, y) = (A;(x, ¥))1<ij<n as a symmetric C1*(C;", ) matrix field satisfying
ij <ijs Bl

30 <oy Sy, V(x,y) €C ), VE €R?,
aill? = Y Ayx. YEE < anlél. (4.12)

1=<ij=2

Moreover,

BC(;W = l(x,y) € R?,y = —xcotB +Iwhenx >0, andy = xcoto + | whenx < 0]
denotes the boundary of the subset C; . Which was introduced in Definition 1.1, and

dist ((x, ) 8c;ﬂq,>

stands for the Euclidean distance from (x, y) € R? to the boundary 8C;ﬁ,,.
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The generalized comparison principle is now stated in the following lemma.

Lemma 4.1. Let « and S8 be fixed in (0, w) and | € R. Let g(x, y, u) be a globally bounded and a globally Lipschitz-continuous
functwn defined in C+ﬁ, x R. Assume that g is non-increasing with respect to u in R?> x [1 — p, +00) for some p > 0. Let

= (q1(x,¥), q2(x,y)) be a globally bounded C® ‘5( «p, ,) vector field (with § > 0) and let A(x,y) = (Aj(X,¥))1<ij<2 be a
symmetric C+ (C(j 5.1) matrix field satisfying (4.12).

Assume that ¢'(x, y) and ¢>(x, y) are two bounded uniformly continuous functions defined in CJr 1 0f class car (C+ ) (for
some p > 0). Furthermore, we assume that

Lp' +gx,y,¢") >0 mCaﬂl,
Lp*> +g(x,y,¢°) <0 inC B
¢'(x.y) <P*x.y)  ondCl,,

and that

lim sup [¢'(x,y) — ¢*(x, )] <0, (4.13)
(x,y)e(fa+ dlSt((X y); 8C+ﬁ l)—>+oo

where L is the elliptic operator defined by
Ly = Vx,y . (Avx,y¢) +qx,y) - V><,y¢-
If¢>>1—pin aﬂ,,then

o' <¢? inCl,.

Remark 4.1. Note here that ¢!, ¢?, §, A and g are not assumed to be L-periodic with respect to x.
Proof. Since the functions ¢' and ¢? are globally bounded, one can then find & > 0 large enough such that ¢' — ¢ < ¢? in

Cy .- Let us set

a,

8*:inf{8>0,¢>1—5§¢zinCiﬂ’,} > 0.

By continuity, we then get ¢' — &* < ¢ in C;:ﬂ’,. Thus, to complete the proof of Lemma 4.1, it suffices to prove that ¢* = 0.
Assume &¢* > 0. Then, there exist a sequence {&,}ncy converging to €*, with 0 < &, < &* for all n, and a sequence of

points (X, yn) € Cy 4 such that

¢ (Xn, Yn) — n > ¢* (X, yn) foralln e N.

Because of (4.13) and since ¢* > 0, the sequence [dist <(x,,,y,,); ac;ﬁ ,)] is bounded. Furthermore, the facts that
e neN

¢' < ¢*ondC, 4 and ¢', ¢* are uniformly continuous yield that

R := liminf dist ((xn,yn); ac;fj’,) > 0.

n—+o00

Foreachn € N, let (x;, y;,) be a point on 8C+)3 ; such that

dist (0 y); 0G5, ) = |5 ¥3) = Gy
Up to extraction of some subsequence, we can then conclude that there exists (%, y) € R? with |(X, ¥)| = R such that
(X0 Yn) — (X, Yn) = (X,y) asn — +oo.

Call Bg := {(x,y) € R?, |(x,¥)| < R)}. It follows from the definition of R that for any point (x, y) € Bz and for any n € N large
enough, we have (x,y) + (X,, yn) € C;L’ﬁ_’,.
For each (x, y) € Bg, call

Gax,Y) = ' X+ X0,y +yn) and ¢ (X, ¥) = ¢*(X+ Xn, Y + V)

for n large enough. }
From the regularity assumptions on ¢! and ¢? and up to extraction of some subsequence, the functions ¢! converge

in Cf)C(BR) to two functions ¢<i>o which can be extended by continuity to 9B; and are of class C%* (@ fori = 1,2.
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Similarly, since g and A are globally C%*(C;f ;) and C'*(C;, |) (for some § > 0), we can assume that the fields g, (x, y) =
G(x + X5, ¥y +yn) and A, (x, y) = A(X + xn, y + yu) converge as n — 00 in Bg to two fields g, and A, which are of class
C%9(Bg) and C"(Bg). The matrix A satisfies the same ellipticity condition as A which is given in (4.12).

For each (x, y) € Bg, the functions ¢>,’;, i=1,2,satisfy
Ly — Lndpps = =X+ Xn, ¥ + Vi, Da (%, ) + EX + Xa, ¥ + Yn, P2 (%, ¥))

for n large enough, where

Ly == Vyy - (Anvx,y¢) +n - Viy®.

Since > > 1 — pin C;ﬁ,, and g(x, y, u) is non-increasing with respect to u in the set C;:ﬂ,l X [1— p, +00), we get

Loy — Ln@p = —8(X+ X0 ¥ + Y, by (0. 9) + X+ X0, ¥ + Y, b7 (1, Y) + €7). (4.14)
From the assumptions of Lemma 4.1, we can also assume, up to extraction of some subsequence, that the functions
Ro(X.¥) i= —g (X + X0, ¥ + Y. $y (2, ¥) + X + X0, ¥ + Y. B (x,y) + £7)
converge to a function Ry, (x, ¥) locally uniformly in Bg. Since
[Ra(X, )| < lIglluiplepn (%, ¥) — £* — 3 (x, y)|

foralln € N, we get |[Roo (X, )| < lIg|lLip |¢;O x,y)—e*— ¢§O (x, y)|. In other words, there exists a globally bounded function
B(x, y) defined in Bg such that

Roo (X, ¥) = B(x,y) [¢1,(x, ) — &* — ¢Z (x,y)] forall (x,y) € Bg.
By passing to the limit as n — 400 in (4.14), it follows that

Loohls — Loot3 = B, Y)(@% — €* — ¢3) inBy,
where Loo¢p := Vyy - (Aoo Vxy®) + oo - Viy@. Let

zZ(x,y) = ¢l — & — % inBg.
We then get

Looz —B(x,y)z > 0 inBg. (4.15)
Noticing that (x;,y,) € dC, ;, that ¢! < ¢ over C,, , that ¢! and ¢? are uniformly continuous in ?ﬁ, and that
(Xn: ¥n) = (Xn, yn) = (X, ), we have

P ®.9) < %X 9. (4.16)

On the other hand, for each (x, y) € Bg, ¢, (x,y) — €* < ¢2(x, y) for n large enough, and ¢ (0, 0) — &, > $2(0, 0). Passing
to the limit as n — 400 and over dBg, then by continuity, we get

dL(x,y) —e* < p2(x,y) inBg,
and
$1.(0,0) — &* = ¢% (0, 0).

Consequently, the function z = z(, y) is a nonpositive continuous function in Bg, satisfying (4.15) in Bg and such that
z(0, 0) = 0. Then, the strong maximum principle yields that z = 0 in Bz with ¢* > 0. Namely, ¢;O x,y)—¢&* = ¢§o x,y)
for all (x, y) € Bg. We get a contradiction with (4.16) by choosing (x, y) = (%, y) (€ 8Bg). O

The following lemma is devoted to proving the positivity of the infimum of a conical front solving (1.4)-(1.5) over any
set having the form of an “upper cone”. This lemma will be also used in the proof of Theorem 1.2.

Lemma 4.2. For any fixed o and 8 in (0, i), let (c, ¢) be a solution of (1.4)-(1.5). Then,
VIeR, inf  ¢(x,y) > 0. (4.17)
xyeCy

Proof. Since the function ¢ is nonnegative in R?, then infg2 ¢ > 0. In order to prove (4.17), we assume to the contrary that
inf(x Vect s, ¢(x,y) = 0 for some fixed [y € R. Thus, there exists a sequence {(X;, ¥n) }nen in C:ﬁ o such that ¢(x,, yn) — 0
D 510 8
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asn — +o0. On the other hand, the limiting condition lim;_, ; i“f(x,y)echﬂ I ¢(x,y) = 1yields that there exists M € R
such that -

3
YY) € Gpue 9y = 4 (4.18)

We recall that dist ((x,,,y,.,); 8C;ﬂ‘,0) is the Euclidean distance from (x,, y,) € R? to the boundary BCzﬁ_’lO. Having (4.18)

and the fact that ¢ (x,, y,) — 0asn — 400, we know that the sequence {dist((x, ¥n); BCJﬂJO)}neN should be bounded
and consequently,

3(X,¥) € R? such that X + X, ¥ +¥a) € Cyf 4y (4.19)

for all n € N. Now, we define ¢,(x, y) := ¢(x + X5,y + y,) forall (x,y) € R? and n € N. From (1.4), the function ¢, is a
classical solution of the following equation

Ax,y¢n + (qx + xp) — C)ay¢n +f(¢p) =0 in th

foralln e N.

The function q is a globally bounded C'%(R) function which is L-periodic. As a consequence, we can assume that the
sequence of functions g,(x) := q(x + x,) converges uniformly in R, as n — 400, to the function ¢ = q(x + xoo) for
some Xo, € R. The regularity of the function ¢ yields that the sequence {¢;}ncy is bounded in (at least) C>? (R?). Thus, up to
extraction of some subsequence, ¢, — ¢, in Clzoc(Rz) asn — +oo, where ¢, is a nonnegative (0 < ¢, < 1foralln € N)
classical solution of the equation

AgyPoo + (@(X + Xo0) — €) Dyoo + f(Poo) =0 in R

Moreover, ¢OO(05 0) = limna+oo ¢(Xny Yn) =0.
Since f > 0in [0, 1], we then have

AxyPoo + (X + X50) — €) 0y < 0 in Rz,
0<¢=1 inRz,
$(0,0) = 0.

The strong maximum principle implies that ¢, = 0 in R%. However, we can conclude from (4.18) and (4.19) that

_ _ 3
VneN, ¢X+xn,y+yn) = 7
Passing to the limit asn — 400, one gets ¢, (X, ) > 3/4, which is a contradiction with ¢, = 0 in R?. Therefore, our
assumption that inf Ve s, ¢(x,y) = 0is false and that completes the proof of Lemma 4.2. O
EC 510
Now, we are in the position to give the proof of the main result in this section.

Proof of Theorem 1.2. In this proof, we call
VT eR, ¢ (x,y) :=¢k y+7)forall (x,y) € R

Assume that one has proved that ¢* > ¢ in R? for all T > 0. Since the coefficients q and f are independent of y, then for
any h > 0, the nonnegative function z(x, y) := ¢"(x, y) — ¢(x, y) is a classical solution (due to (1.4)) of the following linear
elliptic equation

Axyz +(q(x) —)dyz +b(x,y)z=0 in R?,

for some globally bounded function b = b(x, y). It follows from the strong maximum principle that the function z is either
identically 0, or positive everywhere in R2. Due to the conical limiting conditions (1.5) satisfied by the function ¢, we can
conclude that the function z cannot be identically 0. In fact, if z = 0, then ¢(x, y + h) = ¢(x, y) for all (x,y) € R? with
h > 0. This yields that ¢ is h-periodic with respect to y, which is impossible from (1.5). Hence, the function z is positive
everywhere in R?, and consequently, the function ¢ is increasing in y.

By virtue of the above discussion, we only need to prove that ¢ > ¢ forall t > 0. Proposition 4.1 yields that there exists
lp € Rsuch that 9,¢(x,y) > Oforall (x,y) € Ca_’ﬂ’lo. On the other hand, Lemma 4.2 yields that inf(x,y)ec;ﬁ o ¢(x,y) > 0.

Since

lim  sup ¢(x,y) =0,
l——o00 —
x)EC, g
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there exists then B > 0 such that —B < [ and

Yx,y) €Crpp Oxy) < inf oK.y,
' CERE I

and consequently, we have
VT >0, Vy) €Cry g $xY) <Ry +1). (4.20)

The above inequality is indeed satisfied in both casesy + t < Iy andy + t > lp. The assumption that f'(1) < 0in(1.3) and
the continuity of f" over [0, 1] lead to the existence of 0 < 1 < 1 such that f is non-increasing in [1 — 7, 1]. Furthermore,

even it means increasing B, one can assume, due to (1.5), that ¢(x,y) > 1 — n for all (x,y) € C;’ﬂ’B and ¢ (x,y) < 6 for all

x,y) € Cop—pr where 6 is chosen so that 0 < @ < 1 — 5. We apply Lemma 4.1 to the functions ¢! := ¢ (notice that ¢ is
actually at least of class C%#(R?) forall 0 < p < 1 from the elliptic regularity theory) and ¢? := ¢* with t > 2B, by taking

p=nA=1,g=fqx) = (0,q(x) —c)inRand | = —B, to obtain
VT2 2B Y(0.Y) €Cly o p(X.Y) < 9T(X.Y).
Combining the above inequality with (4.20), we have
VT 2B, V(x,y) €R’, $(x,y) < ¢"(x,y).
Let us now decrease 7 and set
t* =inf{r > 0,¢(x,y) < ¢(x,y+ ') forall v’ > 7 and for all (x, y) € R*}.

*

We want to prove that 7* = 0. Let us assume by contradiction that 7* > 0. First, we note that t
* .,
we have ¢ < ¢7 inR. Call

— ct +
S=0Cup-5\Cyp

< 2B, and by continuity,

the slice located between the “lower cone” Cop—s and the “upper cone” C,j‘ﬁ,B. Then, for the value of sup, ) 5(¢(x,y) —
¢f* (x,¥)), the following two cases may occur.
Case 1: suppose that

sup_(#(x.3) — 6" (%)) <0,
x,y)€S

Since the function ¢ is (at least) uniformly continuous, there exists ¢ > 0 such that 0 < ¢ < t* and the above inequality
holds for all T € [t* — &, t*]. Then, for any 7 in the interval [t* — &, t*], due to (4.20) and the definition of S, we get that

¢, y) <" (x,y) over C, ;.

Hence, ¢ < ¢T over BCJﬂ,B. On the other hand, since t > 7* —¢ > 0and ¢ > 1 — n over Cj’ﬂyB, we have ¢* > 1 — n over

C,l 5.5- Lemma 4.1, applied to ¢ and ¢" in C,/ ; ,, yields that

o(x,y) <@ (x,y) forall (x,y) € C;,ﬁ,B'

As a consequence, we obtain ¢ < ¢° in R?, and that contradicts the minimality of z*. Therefore, case 1 is ruled out.
Case 2: suppose that

sup_(#(x.3) — 6" (%)) =0,

(x,y)€S

Then, there exists a sequence of points {(x,, ¥n) }nen in S such that

@ Xns Yn) — ¢T*(Xn’yn) — 0 asn— +oo. (4.21)

Foreachn € N, call ¢,,(x, y) = ¢(x+x,, y+yn) and ¢,f* x,y) = ¢)f* (X+xn, y+yn), forall (x, y) € R%. From the regularity
of ¢ and up to extraction of some subsequence, the functions ¢, and ¢, * converge in Cf)c (R?) to two functions ¢, and ¢;§ .
On the other hand, since q is globally C*-? (R) and L-periodic, we can assume that the functions g,(x) = q(x + x,) converge
uniformly in R to a globally C*? (R) function gs as n — +oo.

Forany (x,y) € R?, setz(X, y) = ¢oo (X, y) — ¢;: (x,y). The function z is nonpositive because ¢ < qb’* in R?. Moreover,
by passing to the limit as n — +o00in (4.21), we obtain z(0, 0) = 0. Furthermore, since the function q does not depend on
y, we know that the function z solves the following linear elliptic equation

AvyZ + (@oo(®) — )3z + b(x,y)z =0 inR?
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for some globally bounded function b(x, y) (since f is Lipschitz continuous). Then, the strong elliptic maximum principle
implies that either z > 0inR? orz = 0 everywhere in R?. In fact, the latter case is impossible because it contradicts with the
conical conditions at infinity (1.5): indeed, since (x,, y») € S for all n € N, it follows from (1.5) that limy_, 1o, $*°(0,y) =1
and limy_, _, ¢*°(0, y) = 0, whence the function ¢*> cannot be t*-periodic with respect to y, with z* > 0. Thus, we have
z(x,y) > 0in R2. But, that contradicts with z(0, 0) = 0. So, case 2 is ruled out too.

Finally, we have proved that t* = 0, which means that ¢ < ¢ for all T > 0. Then, it follows from the discussion in the
beginning of this proof that the function ¢ is increasing in y. Thus, the proof of Theorem 1.2 is complete. O

5. Proof of the asymptotic behaviors

This section is devoted to the proof of Theorem 1.3. We begin first with Parts (i) and (iii). It follows from formula (1.9)
thatforally >0,m>0,p > 0andL > 0

* *
c*(p, m’q, mf) C,oA,qusinoz,mf CpB.qusinﬂ,mf
——/— — = mhaX ; , :
J/m Jmsina J/msin 8
* *
c*(mp, m”q, f) — max (CmpA,ml’qsina.f CinpB,mv q sinﬁ.f)

J/m Jmsina T /msing

c* c*
pA.q sina,f  ~pB,qy sin B,f
¢*(p, qu. ) = max ( sine ’  sinp ) '

We recall that the quantities appearing in the right-hand side of (5.1) are the parametric minimal speeds of propagation of
some associated “left” and “right” reaction-advection-diffusion problems of the type (1.8). Since V - Ae = V - Be = 0, with
e =(0,1),inR?, e - pAe = e - pBe = p and the function f satisfies the KPP condition (1.3), it follows then from Theorems
4.1, 4.3 and 5.2 of El Smaily [26] that

c* ) c* )
v . mpA,mY qsine,f — 1 mpB,mY qsin B.f — ;
y €10,1/2], mllToo —Jm Jim —Jm 2/ pf'(0),
Coamvgsi Copmv gsi
V> 1 2’ lim pA,mY qsina,mf — lim pB,mY qsin B, mf -2 (0 i
vl T e Jm verm

and

lim C;A,quina,f = lim C;B,quinﬁ,f = 2\/ pf/(o)

L0t L—0t

Together with (5.1), we obtain the limits (1.13), (1.14) and (1.18).
Let us now turn to the proof of Part (ii) of Theorem 1.3. Remember first that

C*(,O, m(Lf) — max (C;A,mqsina,f C;B,mqsinﬂ.f) (52)

m msina ~  msinB
for allm > 0, from Theorem 1.1. Let now q be the vector field defined by
G(x,y) = (0,q(x)) forall (x,y) € R*.

This field is (L, I)-periodic in R? for each | > 0, and it satisfies V - § = 0 in R2. Therefore, it follows from Theorem 1.1 in [34]
or Theorem 1.1 in [32] that, for each | > 0,

C;A,mq sine,f

msine  m—+oo

c*

B,mqsin B,

i q L] ? )\'ﬂB,[a
msinf  m—+oo

where, for any matrix M fulfilling (1.7) and for any I > 0, the quantity Ay is defined by

f(O.L)X(O ) qu?
Amip= max Ry (w),  Rui(w) = ———"—0n

wetm,1 o.hx@©,) W
and

It = Jw € HL (R \ {0}, wis (L, D-periodic, § - Vw = 0 a.e. in R?, /

Vw - MVw < f'(0) w?
(0,L)x (0,1 (0,L)x(0,1)
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is a subset of the set of non-trivial (L, [)-periodic first integrals of 4. Notice that the set 4 ; contains the non-zero constants,
and that the max in the definition of Ay is reached, see [34,32]. It follows from (5.3) that the quantities A ,4; and A ;5 ; do
not depend on | > 0. Furthermore, since §(x, y) = (0, q(x)), there holds

)"pA,l > }",OA,O and )‘pB,l > )"pB,O foralll > 0, (54)

where, for any matrix M fulfilling (1.7),

L2
fo qw
Amo = max - ¥
weH! (R)\(0).L-periodic fo w?
/12 < w2
Myl o SOl
Let us now check that the opposite inequalities A,a; < A,a0 and A,p; < Apo also hold. The proof uses elementary
arguments, we just sketch it here for the sake of completeness. We do it for A 4, the proof being identical for A . Let
{l.}nen be the sequence of positive real numbers defined by [, = 27" for alln € N, and let {wy},en be a sequence of
maximizers of the functionals R4, in {4 ,, that is

2 2
f(o.L)x(o,ln)qwn _ f(O,L)x(O,l)qwn

2 2
-/‘(O,L)X(O,ln) wy f(o,L)x(o,n wy

)\‘/)A,In = RpA,ln (wy) = (5.5)

for all n € N. Without loss of generality, one can assume that ||wy |;2(.1)x(0,1y) = 1 for alln € N. By definition, one has

,0/ Vw, -AVw, = 2”,0/ Vw, - AVw,
(0.L)x(0,1) (0.L)x (0,1n)

2"f'(0) wy = f'(0) wy = f'(0).

(0,L)x(0,In) (0,1)x(0,1)

IA

By coercivity of the matrix A, the sequence {w,}ney is then bounded in H'((0, L) x (0, 1)). There exists then a function
wee € H,.(R?), which is (L, 1)-periodic, such that, up to extraction of a sequence, w, — we as n — o0 in L3 (R?)
strongly and in H! .(R?) weakly. Thus,

loc

pf Ve - AVWso < liminfp/ Vwy, - AVw, < f'(0) w2 = f(0).
(0.1)x(0,1) n=>+00 " J(0,1)x(0,1) (0,1)x(0,1)

It is then classical to see that w., does not depend on y. Therefore,

foL qwio
L

w

)‘-pA,ln > n—+00 < )\pA,O

0 o]

from (5.5) and the definition of X4 o. Together with (5.4) and the fact that the quantities A,4; do not depend on [, one
concludes that A, = A4 foralll > 0. It follows then from (1.10), (5.2) and (5.3) that

L2
c*(p, mq, w
M N max(kpA,o, }\pB,O) = max fo 1

3 .
m m—+00 weH!_(R)\(0)L-periodic fo w2

J12 <f () |w]2
P12, o 1y Ol

©.L)

This provides (1.15).
Formula (1.15), together with (1.2), implies that (1.16) and (1.17) hold, as in [34,32] or as a consequence of Theorem 1.3
of [28]. The proof of Theorem 1.3 is thereby complete. O

Acknowledgments

The first author was partially supported by a PIMS postdoctoral fellowship and by an NSERC grant. The second author is
partially supported by the French “Agence Nationale de la Recherche” within the projects ColonSGS and PREFERED. He is
also indebted to the Alexander von Humboldt Foundation for its support. The third author is supported by National Natural
Science Foundation of China, and the Specialized Research Fund for the Doctoral Program of Higher Education.

References

[1] RA. Fisher, The advance of advantageous genes, Ann. Eugenics 7 (1937) 335-369.

[2] A.N. Kolmogorov, I.G. Petrovsky, N.S. Piskunov, Etude de I'équation de la diffusion avec croissance de la quantité de matiére et son application a un
probléme biologique, Bull. Univ. Etat Moscou A 1(1937) 1-26.

[3] D.G. Aronson, H.F. Weinberger, Multidimensional nonlinear diffusions arising in population genetics, Adv. Math. 30 (1978) 33-76.

[4] P.C. Fife, Mathematical Aspects of Reacting and Diffusing Systems, in: Lecture Notes in Biomathematics, vol. 28, Springer-Verlag, Berlin, New York,
1979.

[5] J.D. Murray, Mathematical Biology, Springer-Verlag, 1989.



6486 M. El Smaily et al. / Nonlinear Analysis 74 (2011) 6469-6486

[6] A.Bonnet, F. Hamel, Existence of non-planar solutions of a simple model of premixed Bunsen flames, SIAM ]. Math. Anal. 31 (1999) 80-118.
[7] F. Hamel, R. Monneau, Solutions of semilinear elliptic equations in RV with conical-shaped level sets, Comm. Partial Differential Equations 25 (2000)
769-819.
[8] F.Hamel, R. Monneau, ].-M. Roquejoffre, Stability of conical fronts in a combustion model, Ann. Sci. Ec. Norm. Supér. 37 (2004) 469-506.
[9] F.Hamel, R. Monneau, ].-M. Roquejoffre, Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst.
Ser. A 13 (2005) 1069-1096.
[10] F.Hamel, R. Monneau, ].-M. Roquejoffre, Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst.
Ser. A 14 (2006) 75-92.
[11] H. Ninomiya, M. Taniguchi, Existence and global stability of traveling curved fronts in the Allen-Cahn equations, J. Differential Equations 213 (2005)
204-233.
[12] H.Ninomiya, M. Taniguchi, Global stability of traveling curved fronts in the Allen-Cahn equations, Discrete Contin. Dyn. Syst. Ser. A 15 (2006) 819-832.
[13] J.-M. Roquejoffre, V. Roussier-Michon, Nontrivial large-time behaviour in bistable reaction-diffusion equations, Ann. Mat. Pura Appl. 188 (2009)
207-233.
[14] M. Taniguchi, Traveling fronts of pyramidal shapes in the Allen-Cahn equation, SIAM ]. Math. Anal. 39 (2007) 319-344.
[15] M. Taniguchi, The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen-Cahn equations, J. Differential Equations 246 (2009)
2103-2130.
[16] F.Hamel, N. Nadirashvili, Travelling fronts and entire solutions of the Fisher-KPP equation in RV, Arch. Ration. Mech. Anal. 157 (2001) 91-163.
[17] H. Berestycki, L. Nirenberg, Travelling fronts in cylinders, Ann. Inst. H. Poincaré, Anal. Non Linéaire 9 (1992) 497-572.
[18] H. Berestycki, F. Hamel, Front propagation in periodic excitable media, Comm. Pure Appl. Math. 55 (2002) 949-1032.
[19] H.F. Weinberger, On spreading speeds and traveling waves for growth and migration models in a periodic habitat, ]. Math. Biol. 45 (2002) 511-548.
[20] M. Haragus, A. Scheel, Almost planar waves in anisotropic media, Comm. Partial Differential Equations 31 (2006) 791-815.
[21] M. Haragus, A. Scheel, Corner defects in almost planar interface propagation, Ann. Inst. H. Poincaré, Anal. Non Linéaire 23 (2006) 283-329.
[22] H. Berestycki, F. Hamel, N. Nadirashvili, The speed of propagation for KPP type problems, [-Periodic framework, J. Eur. Math. Soc. 7 (2005) 173-213.
[23] F. Hamel, Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity, J. Math. Pures Appl. 89 (2008) 355-399.
[24] F.Hamel, L. Roques, Uniqueness and stability of monostable pulsating travelling fronts, J. Eur. Math. Soc. 13 (2011) 345-390.
[25] M. El Smaily, Min-max formulas for the speeds of pulsating travelling fronts in periodic excitable media, Ann. Mat. Pura Appl. 189 (2010) 47-66.
[26] M. El Smaily, Pulsating travelling fronts: asymptotics and homogenization regimes, European J. Appl. Math. 19 (2008) 393-434.
[27] M. El Smaily, F. Hamel, L. Roques, Homogenization and influence of fragmentation in a biological invasion model, Discrete Contin. Dyn. Syst. Ser. A 25
(2009) 321-342.
[28] S.Heinze, Large convection limits for KPP fronts, preprint, Max Planck Institute Leipzig, 2005.
[29] G.Nadin, Traveling fronts in space-time periodic media, ]. Math. Pures Appl. 92 (2009) 232-262.
[30] G. Nadin, The effect of Schwarz rearrangement on the periodic principal eigenvalue of a nonsymmetric operator, SIAM J. Math. Anal. 41 (2010)
2388-2406.
[31] L. Ryzhik, A. Zlatos, KPP pulsating front speed-up by flows, Commun. Math. Sci. 5 (2007) 575-593.
[32] A.Zlatos, Sharp asymptotics for KPP pulsating front speed-up and diffusion enhancement by flows, Arch. Ration. Mech. Anal. 195 (2010) 441-453.
[33] H. Berestycki, L. Nirenberg, On the method of moving planes and the sliding method, Bol. Soc. Brasil. Mat. 22 (1991) 1-37.
[34] M.EISmaily, S.Kirsch, The speed of propagation for KPP reaction-diffusion equations within large drift, Adv. Differential Equations 16 (2011) 361-400.



	Two-dimensional curved fronts in a periodic shear flow
	Introduction and main results
	Existence of a curved front  (c, φ)  for all  c geqc* 
	Nonexistence of conical fronts  (c, φ)  for  c <c* 
	Monotonicity with respect to  y 
	Proof of the asymptotic behaviors
	Acknowledgments
	References


