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Abstract. In this paper, some properties of the minimal speeds of pulsat-
ing Fisher-KPP fronts in periodic environments are established. The limit of
the speeds at the homogenization limit is proved rigorously. Near this limit,
generically, the fronts move faster when the spatial period is enlarged, but the
speeds vary only at the second order. The dependence of the speeds on habitat
fragmentation is also analyzed in the case of the patch model.

1. Introduction and main hypotheses. In homogeneous environments, the pro-
bably most used population dynamics reaction-di↵usion model is the Fisher-KPP
model [13, 23]. In a one-dimensional space, it corresponds to the following equation

@u

@t
= D

@
2
u

@x2
+ u (µ� ⌫u), t > 0, x 2 R. (1)

The unknown u = u(t, x) is the population density at time t and position x, and the
positive constant coe�cients D, µ and ⌫ respectively correspond to the di↵usivity
(mobility of the individuals), the intrinsic growth rate and the susceptibility to
crowding e↵ects.
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A natural extension of this model to heterogeneous environments is the Shigesada-
Kawasaki-Teramoto model [32],

@u

@t
=

@

@x

✓
aL(x)

@u

@x

◆
+ u (µL(x)� ⌫L(x)u), t > 0, x 2 R, (2)

where the coe�cients depend on the space variable x in a L-periodic fashion:

Definition 1.1 (L-periodicity). Let L be a positive real number. We say that a
function h : R ! R is L-periodic if

8 x 2 R, h(x+ L) = h(x).

In this paper, we are concerned with the general equation:

@u

@t
=

@

@x

✓
aL(x)

@u

@x

◆
+ fL(x, u), t 2 R, x 2 R. (3)

The di↵usion term aL satisfies

aL(x) = a(x/L),

where a is a C
2,�(R) (with � > 0) 1-periodic function that satisfies

9 0 < ↵1 < ↵2, 8 x 2 R, ↵1  a(x)  ↵2. (4)

On other hand, the reaction term satisfies fL(x, ·) = f(x/L, ·), where f := f(x, s) :
R ⇥ R+ ! R is 1-periodic in x, of class C1,� in (x, s) and C

2 in s. In this setting,
both aL and fL are L-periodic in the variable x. Furthermore, we assume that:

8
<

:

8 x 2 R, f(x, 0) = 0,
9 M � 0, 8 s � M, 8 x 2 R, f(x, s)  0,
8 x 2 R, s 7! f(x, s)/s is decreasing in s > 0.

(5)

Moreover, we set

µ(x) := lim
s!0+

f(x, s)/s,

and

µL(x) := lim
s!0+

fL(x, s)/s = µ

⇣
x

L

⌘
.

The growth rate µ may be positive in some regions (favorable regions) or negative
in others (unfavorable regions).

The stationary states p(x) of (3) satisfy the equation

@

@x

✓
aL(x)

@p

@x

◆
+ fL(x, p) = 0, x 2 R. (6)

Under general hypotheses including those of this paper, and in any space dimension,
it was proved in [4] that a necessary and su�cient condition for the existence of a
positive and bounded solution p of (6) was the negativity of the principal eigenvalue
⇢1,L of the linear operator

L0 : � 7! �(aL(x)�
0)0 � µL(x)�, (7)

with periodicity conditions. In this case, the solution p was also proved to be
unique, and therefore L-periodic. Actually, it is easy to see that the map L 7! ⇢1,L

is nonincreasing in L > 0, and even decreasing as soon as a is not constant (see the
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proof of Lemma 3.1). Furthermore, ⇢1,L ! �
Z 1

0
µ(x)dx as L ! 0+. In this paper,

in addition to the above-mentioned hypotheses, we make the assumption that
Z 1

0
µ(x)dx > 0. (8)

This assumption then guarantees that

8 L > 0, ⇢1,L < 0,

whence, for all L > 0, there exists a unique positive periodic and bounded solution
pL of (6). Notice that assumption (8) is immediately fulfilled if µ(x) is positive
everywhere.

In this work, we are concerned with the propagation of pulsating traveling fronts
which are particular solutions of the reaction-di↵usion equation (3). Before going
further on, we recall the definition of such solutions:

Definition 1.2 (Pulsating traveling fronts). A function u = u(t, x) is called a
pulsating traveling front propagating from right to left with an e↵ective speed c 6= 0,
if u is a classical solution of:

8
>>>>>><

>>>>>>:

@u

@t
=

@

@x

✓
aL(x)

@u

@x

◆
+ fL(x, u), t 2 R, x 2 R,

8 k 2 Z, 8 (t, x) 2 R ⇥ R, u(t+
kL

c
, x) = u(t, x+ kL),

0  u(t, x)  pL(x),
lim

x!�1
u(t, x) = 0 and lim

x!+1
u(t, x)� pL(x) = 0,

(9)

where the above limits hold locally in t.

This definition has been introduced in [31, 32]. It has also been extended in
higher dimensions with pL ⌘ 1 in [1] and [35], and with pL 6⌘ 1 in [5].

Under the above assumptions, it follows from [5] that there exists c
⇤
L
> 0 such

that pulsating traveling fronts satisfying (9) with a speed of propagation c exist
if and only if c � c

⇤
L
. Moreover, the pulsating fronts (with speeds c � c

⇤
L
) are

increasing in time t. Further uniqueness and qualitative properties are proved in
[14, 15]. The value c

⇤
L

is called the minimal speed of propagation. We refer to
[2, 3, 11, 18, 25, 27, 28, 34] for further existence results and properties of the
minimal speeds of KPP pulsating fronts. For existence, uniqueness, stability and
further qualitative results for combustion or bistable nonlinearities in the periodic
framework, we refer to [6, 7, 12, 16, 17, 19, 24, 26, 35, 36, 37, 38].

In the particular case of the Shigesada et al model (2), when a(x) ⌘ 1, the e↵ects
of the spatial distribution of the function µL on the existence and global stability of a
positive stationary state pL of equation (2) have been investigated both numerically
[30, 31] and theoretically [4, 8, 29]. In particular, as already noticed, enlarging the
scale of fragmentation, i.e. increasing L, was proved to decrease the value of ⇢1,L.
Biologically, this result means that larger scales have a positive e↵ect on species
persistence, for species whose dynamics is modelled by the Shigesada et al model.

The e↵ects of the spatial distribution of the functions aL and µL on the minimal
speed of propagation c

⇤
L
have not yet been investigated rigorously. This is a di�-

cult problem, since the known variational formula for c
⇤
L
bears on non-self-adjoint

operators, and therefore, the methods used to analyze the dependence of ⇢1,L on



4 M. EL SMAILY, F. HAMEL AND L. ROQUES

fragmentation cannot be used in this situation. However, in the case of model (2),
when aL ⌘ 1, ⌫L ⌘ 1 and µL(x) = µ(x/L), for a 1-periodic function µ taking
only two values, Kinezaki et al [22] numerically observed that c⇤

L
was an increasing

function of the parameter L. For sinusoidally varying coe�cients, the relationships
between c

⇤
L

and L have also been investigated formally by Kinezaki, Kawasaki,
Shigesada [21]. The case of a rapidly oscillating coe�cient aL(x), corresponding to
small L values, and the homogenization limit L ! 0, have been discussed in [19]
and [38] for combustion and bistable nonlinearities f(u).

The first aim of our work is to analyze rigorously the dependence of the speed
of propagation c

⇤
L

with respect to L, under the general setting of equation (3),
for small L values. We determine the limit of the minimal speeds c

⇤
L
as L ! 0+

(the homogenization limit), and we also prove that near the homogenization limit,
the species tends to propagate faster when the spatial period of the environment is
enlarged. Next, in the case of an environment composed of patches of “habitat” and
“non-habitat”, we consider the dependence of the minimal speed with respect to
habitat fragmentation. We prove that fragmentation decreases the minimal speed.

2. Main results. In this section, we describe the main results of this paper. Unless
otherwise mentioned, we make the assumptions of Section 1. The first theorem gives
the limit of c⇤

L
as L goes to 0.

Theorem 2.1. Let c
⇤
L

be the minimal speed of propagation of pulsating traveling
fronts solving (9). Then,

lim
L!0+

c
⇤
L
= 2

p
<a>H <µ>A, (10)

where

<µ>A =

Z 1

0
µ(x)dx and <a>H =

✓Z 1

0
(a(x))�1

dx

◆�1

= <a
�1

>
�1
A

denote the arithmetic mean of µ and the harmonic mean of a over the interval [0, 1].

Formula (10) was derived formally in [33] for sinusoidally varying coe�cients.
Theorem 2.1 then provides a generalization of the formula in [33] and a rigorous
analysis of the homogenization limit for general di↵usion and growth rate profiles.

Remark 1. The previous theorem gives the limit of c⇤
L
as L ! 0 when the space di-

mension is 1. Theorem 3.3 of El Smaily [11] answered this issue in any dimensions N ,
but under an additional assumption of free divergence of the di↵usion field (in the
one-dimensional case considered here, this assumption reduces to da/dx = 0 in R).
Lastly, we refer to [6, 7, 16] for other homogenization limits with combustion-type
nonlinearities.

Our second result describes the behavior of the function L 7! c
⇤
L
, for small L

values.

Theorem 2.2. Let c
⇤
L

be the minimal speed of propagation of pulsating traveling
fronts solving (9). Then, the map L 7! c

⇤
L
is of class C

1 in an interval (0, L0) for
some L0 > 0. Furthermore,

lim
L!0+

dc
⇤
L

dL
= 0 (11)

and

lim
L!0+

d
2
c
⇤
L

dL2
= � � 0. (12)
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Lastly, � > 0 if and only if the function
µ

<µ>A

+
<a>H

a

is not identically equal to 2.

Corollary 1. Under the notations of Theorem 2.2, it follows that if a is constant
and µ is not constant, or if µ is constant and a is not constant, then � > 0 and the
speeds c

⇤
L
are increasing with respect to L when L is close to 0.

Remark 2. The question of the monotonicity of the map L 7! c
⇤
L
had also been

studied under di↵erent assumptions in [11] (see Theorem 5.3). The author answered
this question for a reaction-advection-di↵usion equation over a periodic domain ⌦ ✓
RN , under an additional assumption on the di↵usion coe�cient (like in Remark 1,
this assumption would mean again in our present setting that the di↵usion coe�cient
a(x) is constant over R). Our result gives the behavior of the minimal speeds of
propagation near the homogenization limit for general di↵usion and growth rate
coe�cients. The condition � > 0 is generically fulfilled, which means that, roughly
speaking, the more oscillating the medium is, the slower the species moves. But
the speeds vary only at the second order with respect to the period L. Based
on numerical observations which have been carried out in [21] for special types of
di↵usion and growth rate coe�cients, we conjecture that the monotonicity of c⇤

L

holds for all L > 0.

Lastly, we give a first theoretical evidence that habitat fragmentation, without
changing the scale L, can decrease the minimal speed c

⇤. We here fix a period
L0 > 0.

We assume that a ⌘ 1, and that µL0 := µz takes only the two values 0 and
m > 0, and depends on a parameter z. More precisely:

8
<

:

There exist 0  z and l 2 (0, L0) such that l + z  L0,

µz ⌘ m on [0, l/2) [ [l/2 + z, l + z),
µz ⌘ 0 on [l/2, l/2 + z) [ [l + z, L0).

(13)

With this setting, the region where µz is positive, which can be interpreted as
“habitat” in the Shigesada et al model, is of Lebesgue measure l in each period cell
[0, L0]. For z = 0, this region is simply an interval. However, whenever z is positive,
this region is fragmented into two parts of same length l/2 (see Figure 1). Our next
result means that this fragmentation into two parts reduces the speed c

⇤.

Theorem 2.3. Let c
⇤
z
be the minimal speed of propagation of pulsating traveling

fronts solving (9), with aL0 ⌘ 1 and µL0 = µz defined by (13). Assume that l 2
(3L0/4, L0). Then z 7! c

⇤
z
is decreasing in [0, (L0 � l)/2], and increasing in [(L0 �

l)/2, L0 � l].

Remark 3. Note that, whenever z > (L0 � l)/2, the two habitat components in
the period cell [l/2+ z, L0 + l/2+ z] are at a distance smaller than (L0 � l)/2 from
each other. In fact, Theorem 2.3 proves that, when z varies in (0, L0 � l), c⇤

z
is all

the larger as the minimal distance separating two habitat components is small, that
is as the maximal distance between two consecutive habitat components is large.

Remark 4. Here, the function µz does not satisfy the general regularity assump-
tions of Section 1. However, c⇤

z
can still be interpreted as the minimal speed of

propagation of weak solutions of (9), whose existence can be obtained by approa-
ching µz with regular functions.
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(a)

(b)

Figure 1. The L0-periodic function x 7! µz(x), (a): with z = 0;
(b): with z > 0.

The main tool of this paper is a variational formulation for c⇤
L
involving elliptic

eigenvalue problems which depend strongly on the coe�cients a and f. Such a
formulation was given in any space dimension in [3] in the case where the bounded
stationary state p of the equation (3) is constant, and in [5] in the case of a general
nonconstant bounded stationary state p(x).

3. The homogenization limit: proof of Theorem 2.1. This proof is divided
into three main steps.

Step 1: a rough upper bound for c⇤
L
. For each L > 0, the minimal speed c

⇤
L

is
positive and, from [5] (see also [3] in the case when p ⌘ 1), it is given by the
variational formula

c
⇤
L
= min

�>0

k(�, L)

�
=

k(�⇤
L
, L)

�
⇤
L

, (14)

where �⇤
L

> 0 and, for each � 2 R and L > 0, k(�, L) denotes the principal
eigenvalue of the problem
�
aL 

0
�,L

�0
+ 2�aL 

0
�,L

+ �a
0
L
 �,L + �

2
aL �,L + µL �,L = k(�, L) �,L in R, (15)

with L-periodicity conditions. In (15),  �,L denotes a principal eigenfunction, which
is of class C2,�(R), positive, unique up to multiplication by a positive constant, and
L-periodic. Furthermore, it follows from Section 3 of [5] that the map � 7! k(�, L)
is convex and that @k

@�
(0, L) = 0 for each L > 0. Therefore, for each L > 0, the map

� 7! k(�, L) is nondecreasing in R+ and

8 � � 0, 8 L > 0, k(�, L) � k(0, L) = �⇢1,L > 0 (16)

under the notations of Section 1.
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Multiplying (15) by  �,L and integrating by parts over [0, L], we get, due to the
L-periodicity of aL and  �,L :

k(�, L)

Z
L

0
 
2
�,L

= �
Z

L

0
aL

�
 
0
�,L

�2
+ �

2

Z
L

0
aL 

2
�,L

+

Z
L

0
µL 

2
�,L

,

for all � > 0 and for all L > 0. Consequently,

8 � > 0, 8 L > 0, k(�, L)  �
2
aM + µM , (17)

where
aM = max

x2R
a(x) > 0 and µM = max

x2R
µ(x) > 0.

Using (14), we get that

8 L > 0, 0 < c
⇤
L
 2

p
aMµM . (18)

Step 2: the sharp upper bound for c⇤
L
. For any � > 0 and L > 0, consider the

functions
'�,L(x) := e

� x
 �,L(x), x 2 R.

Since  �,L is unique up to multiplication, we will assume in this step 2 that
Z 2

0
'
2
�,L

(x)dx = 1. (19)

The above choice ensures that
Z 2

0
 
2
�,L

(x)dx 
Z 2

0
e
2�x

 
2
�,L

(x)dx =

Z 2

0
'
2
�,L

(x)dx = 1. (20)

We are now going to prove that the families ( �,L)�,L and ('�,L)�,L remain
bounded in H

1(0, 1) for L small enough and as soon as � stays bounded. For each
L > 0, we call

ML = [1/L] + 1 2 N,
where [1/L] stands for the integer part of 1/L. Multiplying (15) by  �,L and
integrating by parts over [0,ML L], we get that

�
Z

MLL

0
aL 

0
�,L

2
+

Z
ML L

0
�
2
aL 

2
�,L

+

Z
ML L

0
µL 

2
�,L

= k(�, L)

Z
MLL

0
 
2
�,L

.

Using (4), (16) and (17), it follows that

0 
Z

MLL

0
 
0
�,L

2  1

↵1
⇥
�
�
2
aM + µM

�
⇥
Z

ML L

0
 
2
�,L

.

Since 1 < MLL  1 + L for all L > 0, we have that 1 < MLL  2 for all L  1.
Thus, for all 0 < L  1,

Z 1

0
 
0
�,L

2 
Z

MLL

0
 
0
�,L

2
and

Z
MLL

0
 
2
�,L


Z 2

0
 
2
�,L

 1

from (20). It follows now that

8 � > 0, 8 0 < L  1,

Z 1

0
 
0
�,L

2  �
2
aM + µM

↵1
. (21)

From (20) and (21), we conclude that, for any given ⇤ > 0, the family ( �,L) (with
0 < �  ⇤ and 0 < L  1) is bounded in H

1(0, 1). On the other hand,

'
0
�,L

(x) = �'�,L(x) + e
�x
 
0
�,L

(x).
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Owing to (19) and (21), we get:

8 � > 0, 8 L  1, ||'0
�,L

||L2(0,1)  � ||'�,L||L2(0,1)| {z }
1

+e
�|| 0

�,L
||L2(0,1)

 �+ e
� ⇥

s
�2aM + µM

↵1
.

(22)

From (19) and (22), we obtain that, for any given ⇤ > 0, the family ('�,L)
(with 0 < �  ⇤ and 0 < L  1) is bounded in H

1(0, 1) and that the family
(aL'

0
�,L

)0<�⇤, 0<L1 is bounded in L
2(0, 1) (due to (4)). Moreover,

⇣
aL'

0
�,L

⌘0
= �

2
aLe

� x
 �,L + 2�aLe� x

 
0
L
+ �a

0
L
e
� x
 �,L

+e
� x

a
0
L
 
0
�,L

+ e
� x

aL 
00
�,L

.

Multiplying (15) by e
� x

, we then get
�
aL'

0
�,L

�0
+ µL'�,L = k(�, L)'�,L in R. (23)

Let
v�,L(x) = aL(x)'

0
�,L

(x)

for all � > 0, L > 0 and x 2 R. Pick any ⇤ > 0. One already knows that the family
(v�,L)0<�⇤, 0<L1 is bounded in L

2(0, 1). Furthermore,

v
0
�,L

+ µL'�,L = k(�, L)'�,L in R. (24)

Notice that the family (k(�, L))0<�⇤, 0<L1 is bounded from (16) and (17). From
(19) and (24), it follows that the family (v0

�,L
)0<�⇤, 0<L1 is bounded in L

2(0, 1).

Eventually, (v�,L)0<�⇤, 0<L1 is bounded in H
1(0, 1).

Pick now any sequence (Ln)n2N such that 0 < Ln  1 for all n 2 N, and Ln ! 0+

as n ! +1. Choose any � > 0 and any sequence (�n)n2N of positive numbers such
that �n ! � as n ! +1. We claim that

k(�n, Ln) ! �
2
<a>H + <µ>A as n ! +1, (25)

where <a>H=

✓Z 1

0
(a(x))�1

dx

◆
and <µ>A=

Z 1

0
µ(x)dx. To do so, call

 n =  �n,Ln , 'n = '�n,Ln and vn = v�n,Ln .

It follows from the above computations that the sequences ( n) and (vn) are
bounded in H

1(0, 1). Hence, up to extraction of a subsequence,

 n !  and vn ! w as n ! +1,

strongly in L
2(0, 1) and weakly in H

1(0, 1). By Sobolev injections, the sequence
( n) is bounded in C

0,1/2([0, 1]). But since each function  n is Ln-periodic (with
Ln ! 0+), it follows from Arzela-Ascoli theorem that  has to be constant over
[0, 1]. Moreover, the boundedness of the sequence (k(�n, Ln))n2N implies that, up
to extraction of another subsequence,

k(�n, Ln) ! k(�) 2 R as n ! +1.

We denote this limit by k(�), we will see later that indeed it depends only on �. It
follows now, from (24) after replacing (�, L) by (�n, Ln) and passing to the limit as
n ! +1, that

w
0+ <µ>A e

�x
 = k(�) e�x a.e. in (0, 1).
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Notice indeed that µL *<µ>A as L ! 0+ in L
2(0, 1) weakly. Meanwhile,

'
0
n
= �ne

�nx n + e
�nx 

0
n
=

vn

aLn

* <a
�1

>A w as n ! +1,

weakly in L
2(0, 1), where <a

�1
>A=

Z 1

0
(a(x))�1

dx. Thus, we obtain

w =<a
�1

>
�1
A

�e
�x
 =<a>H �e

�x
 .

Consequently,
�
2
<a>H  + <µ>A  = k(�) .

Actually, since the functions  n are Ln-periodic (with Ln ! 0+) and converge to
the constant  strongly in L

2(0, 1), they converge to  in L
2
loc

(R). But

1 =

Z 2

0
'
2
n
 e

4�n

Z 2

0
 
2
n
 e

4M

Z 2

0
 
2
n
,

where M = sup
n2N �n. Hence,  6= 0 and

�
2
<a>H + <µ>A= k(�). (26)

By uniqueness of the limit, one deduces that the whole sequence (k(�n, Ln))n2N
converges to this quantity k(�) as n ! +1, which proves the claim (25).

Now, take any sequence Ln ! 0+ such that c⇤
Ln

! lim sup
L!0+ c

⇤
L
as n ! +1.

For each � > 0 and for each n 2 N, one has

c
⇤
Ln

 k(�, Ln)

�

from (14), whence

lim sup
L!0+

c
⇤
L
= lim

n!+1
c
⇤
Ln

 k(�)

�
= � <a>H +

<µ>A

�
.

Since this holds for all � > 0, one concludes that

lim sup
L!0+

c
⇤
L
 2

p
<a>H <µ>A. (27)

Step 3: the sharp lower bound for c⇤
L
. The aim of this step is to prove that

lim inf
L!0+

c
⇤
L
� 2

p
<a>H <µ>A

which would complete the proof of Theorem 2.1.
For each L > 0, the minimal speed c

⇤
L
is given by (14) and the map (0,+1) 3

� 7! k(�, L)/� attains its minimum at �⇤
L

> 0.We will prove that, for L small
enough, the family (�⇤

L
) is bounded from above and from below by � > 0 and � > 0

respectively. Namely, one has

Lemma 3.1. There exist L0 and 0 < �  � < +1 such that

�  �
⇤
L

 � for all 0 < L  L0.

The proof is postponed at the end of this section. Take now any sequence (Ln)n
such that 0 < Ln  L0 for all n, and Ln ! 0+ as n ! +1. From Lemma 3.1, there
exists �⇤ > 0 such that, up to extraction of a subsequence, �⇤

Ln
! �

⇤ as n ! +1.

One also has

c
⇤
Ln

=
k(�⇤

Ln
, Ln)

�
⇤
Ln

!
n!+1

k(�⇤)

�⇤
= �

⇤
<a>H +

<µ>A

�⇤
� 2

p
<a>H <µ>A
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from (25) and (26). Therefore, lim infL!0+ c
⇤
L
� 2

p
<a>H <µ>A. Eventually,

lim
L!0+

c
⇤
L
= 2

p
<a>H <µ>A

and the proof of Theorem 2.1 is complete. ⇤

Proof of Lemma 3.1. Observe first that, for � = 0 and for any L > 0, k(0, L) is
the principal eigenvalue of the problem

(aL�
0
L
)0 + µL�L = k(0, L)�L in R,

and we denote �L =  0,L a principal eigenfunction, which is L-periodic, positive and
unique up to multiplication. In other words, k(0, L) = �⇢1,L under the notations
of Section 1. Dividing the above elliptic equation by �L and integrating by parts
over [0, L], one gets

k(0, L) =
1

L

Z
L

0

aL �
0
L

2

�
2
L

+

Z 1

0
µ(x)dx � <µ>A > 0.

On the other hand, as already recalled, @k

@�
(0, L) = 0 and the map � 7! k(�, L) is

convex for all L > 0. Therefore,

8 � > 0, 8 L > 0, k(�, L) � k(0, L) � <µ>A > 0.

Assume here that there exists a sequence (Ln)n2N of positive numbers such that
Ln ! 0+ and �⇤

Ln
! 0+ as n ! +1. One then gets

c
⇤
Ln

=
k(�⇤

Ln
, Ln)

�
⇤
Ln

� <µ>A

�
⇤
Ln

! +1 as n ! +1.

This is contradiction with (27). Thus, for L > 0 small enough, the family (�⇤
L
)L is

bounded from below by a positive constant � > 0 (actually, these arguments show
that the whole family (�⇤

L
)L>0 is bounded from below by a positive constant).

It remains now to prove that (�⇤
L
)L is bounded from above when L is small

enough. We assume, to the contrary, that there exists a sequence Ln ! 0+ as
n ! +1 such that �⇤

Ln
! +1 as n ! +1. Call

kn = k(�⇤
Ln

, Ln),  n(x) =  �
⇤
Ln

,Ln(x)

and

'n(x) = '�
⇤
Ln

,Ln(x) = e
�
⇤
Ln

x
 n(x)

for all n 2 N and x 2 R. Rewriting (23) for � = �
⇤
Ln

and for L = Ln, one
consequently gets

8 n 2 N, (aLn'
0
n
)
0
+ µLn'n = kn'n in R. (28)

Owing to the positivity and the Ln-periodicity of the C
2(R) eigenfunction  n, it

follows that

8 n 2 N, 9 ✓n 2 [0, Ln],  n(✓n) = max
x2R

 n(x) = max
x2[0,Ln]

 n(x),

whence

8n 2 N,  0
n
(✓n) = 0.

For each n 2 N, let MLn = [1/Ln] + 1 2 N. Thus,

8 n 2 N, '0
n
(✓n +MLnLn) = �

⇤
Ln

e
�
⇤
Ln

(✓n+MLnLn) n(✓n).
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Multiplying (28) by 'n and integrating by parts over the interval [✓n, ✓n+MLn Ln],
one then obtains

aLn(✓n+MLnLn)'
0
n
(✓n+MLnLn)'n(✓n+MLnLn)�aLn(✓n)'

0
n
(✓n)'n(✓n)| {z }

A(n)

�
Z

✓n+MLn Ln

✓n

aLn'
0
n

2

| {z }
B(n)

+

Z
✓n+MLn Ln

✓n

µLn'
2
n

| {z }
C(n)

= kn

Z
✓n+MLn Ln

✓n

'
2
n
.

(29)

But, for each n 2 N, MLn 2 N while aLn and  n are Ln-periodic. Hence, aLn(✓n +
MLn Ln) = aLn(✓n),  n(✓n+MLn Ln) =  n(✓n), and  0

n
(✓n+MLn Ln) =  

0
n
(✓n) =

0. Then,

A(n) = aLn(✓n)�
⇤
Ln
 
2
n
(✓n)

⇣
e
2�⇤

Ln
(✓n+MLn Ln) � e

2�⇤
Ln

✓n

⌘

� ↵1

2
⇥ �

⇤
Ln
 
2
n
(✓n)e

2�⇤
Ln

(✓n+MLn Ln) (↵1 > 0 is given by (4)),
(30)

whenever n is large enough so that 2  e
2�⇤

Ln
MLnLn (remember that �⇤

Ln
! +1 as

n ! +1, by assumption). Meanwhile, for all n 2 N,

|C(n)| 
Z

✓n+MLn Ln

✓n

����µ(
x

Ln

)

���� e
2�⇤

Ln
x
 
2
n
(x)dx

 µ1 ⇥  
2
n
(✓n)

2�⇤
Ln

⇥ e
2�⇤

Ln
(✓n+MLnLn),

(31)

where µ1 = maxx2R |µ(x)|. On the other hand, (14) and (18) yield

kn  2
p
aMµM ⇥ �

⇤
Ln

for all n 2 N, whence

kn

Z
✓n+MLn Ln

✓n

'
2
n

= kn

Z
✓n+MLn Ln

✓n

e
2�⇤

Ln
x
 
2
n
(x)dx

 p
aMµM ⇥  

2
n
(✓n)⇥ e

2�⇤
Ln

(✓n+MLnLn).

(32)

Now, the term B(n) can be estimated as follows

B(n) =

MLn�1X

j=0

Z
✓n+(j+1)Ln

✓n+jLn

aLne
2�⇤

Ln
x
�
 
0
n
(x) + �

⇤
Ln
 n(x)

�2
dx


MLn�1X

j=0

↵2 e
2�⇤

Ln
(✓n+(j+1)Ln)

Z
✓n+(j+1)Ln

✓n+jLn

�
 
0
n
(x) + �

⇤
Ln
 n(x)

�2
dx

[from (4)]

=

MLn�1X

j=0

↵2 e
2�⇤

Ln
(✓n+(j+1)Ln)

Z
Ln

0

�
 
0
n
(x) + �

⇤
Ln
 n(x)

�2
dx

since  n is Ln-periodic. One has
Z

Ln

0

�
 
0
n
(x) + �

⇤
Ln
 n(x)

�2
dx   

2
n
(✓n)

Z
Ln

0

✓
 
0
n
(x)

 n(x)
+ �

⇤
Ln

◆2

dx.

We refer now to equation (15). Taking � = �
⇤
Ln

, dividing this equation (15) by the
Ln-periodic function  n and then integrating by parts over the interval [0, Ln], we
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get
Z

Ln

0
aLn

✓
 
0
n

 n

◆2

+ 2�⇤
Ln

Z
Ln

0
aLn

 
0
n

 n

+ �
⇤
Ln

2
Z

Ln

0
aLn +

Z
Ln

0
µLn = knLn

for all n 2 N. Thus,
Z

Ln

0
aLn

✓
 
0
n

 n

+ �
⇤
Ln

◆2

+

Z
Ln

0
µLn

| {z }
>0

= knLn  2
p
aMµM ⇥ �

⇤
Ln

Ln.

Owing to (4), it follows that

8 n 2 N,
Z

Ln

0

✓
 
0
n

 n

+ �
⇤
Ln

◆2


2
p
aMµM

↵1
⇥ �

⇤
Ln

Ln.

Putting the above result into B(n), we obtain, for all n 2 N,

B(n) 
2↵2

p
aMµM

↵1
⇥ �

⇤
Ln

Ln 
2
n
(✓n)

MLn�1X

j=0

e
2�⇤

Ln
(✓n+(j+1)Ln)

=
2↵2

p
aMµM

↵1
⇥ �

⇤
Ln

Ln 
2
n
(✓n)e

2�⇤
Ln

(✓n+Ln) ⇥ e
2�⇤

Ln
LnMLn � 1

e
2�⇤

Ln
Ln � 1


2↵2

p
aMµM

↵1
⇥  

2
n
(✓n)⇥

�
⇤
Ln

Lne
2�⇤

Ln
Ln

e
2�⇤

Ln
Ln � 1

⇥ e
2�⇤

Ln
(✓n+MLn Ln)

 � ⇥  
2
n
(✓n)e

2�⇤
Ln

(✓n+MLn Ln) ⇥
�
�
⇤
Ln

Ln + 1
�
,

(33)

where � =
�
2↵2

p
aMµM/↵1

�
⇥ C and C is a positive constant such that

8x � 0,
xe

2x

e2x � 1
 C ⇥ (x+ 1).

Lastly, let us rewrite equation (29) as

8 n 2 N, A(n) + C(n)� kn

Z
✓n+MLnLn

✓n

'
2
n
= B(n).

Together with (30), (31), (32) and (33), one concludes that there exists n0 2 N such
that for n � n0,

↵1

2
⇥ �

⇤
Ln
 
2
n
(✓n)e

2�⇤
Ln

(✓n+MLn Ln) � µ1 ⇥  
2
n
(✓n)

2�⇤
Ln

⇥ e
2�⇤

Ln
(✓n+MLnLn)

� p
aMµM ⇥  

2
n
(✓n)e

2�⇤
Ln

(✓n+MLn Ln)

 � ⇥  
2
n
(✓n)e

2�⇤
Ln

(✓n+MLn Ln) ⇥
�
�
⇤
Ln

Ln + 1
�
.

(34)

Divide (34) by �⇤
Ln
 
2
n
(✓n)e

2�⇤
Ln

(✓n+MLn Ln). Then

8 n � n0,
↵1

2
� µ1

2(�⇤
Ln

)2
�

p
aMµM

�
⇤
Ln

 � ⇥
✓
Ln +

1

�
⇤
Ln

◆
.

Passing to the limit as n ! +1, one has Ln ! 0+ and �⇤
Ln

! +1, whence ↵1  0,
which is impossible.
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Therefore the assumption that �⇤
Ln

! +1 as Ln ! 0+ is false and consequently

the family (�⇤
L
)
L
is bounded from above by some positive � > 0 whenever L is small

(i.e. 0 < L  L0). This completes the proof of Lemma 3.1. ⇤
Remark 5. From Theorem 10, one concludes that the map (0,+1) 3 L 7! c

⇤
L
can

be extended by continuity to the right at L = 0+. Furthermore, for any sequence
(Ln)n of positive numbers such that Ln ! 0+ as n ! +1, one claims that the pos-

itive numbers �⇤
Ln

given in (14) converge to
q

<a>
�1
H

<µ>A =
p
<a�1>A<µ>A

as n ! +1. Indeed

8 n 2 N, c
⇤
Ln

=
k(�⇤

Ln
, Ln)

�
⇤
Ln

and Lemma 3.1 implies that, up to extraction of a subsequence, �⇤
Ln

! �
⇤
> 0.

Passing to the limit as n ! +1 in the above equation and due (26) together with
Step 2 of the proof of Theorem 10, one gets

2
p
<a>H<µ>A =

k(�⇤)

�⇤
= �

⇤
<a>H +

<µ>A

�⇤
,

whence �⇤ =
q
<a>

�1
H

<µ>A. Since the limit does not depend on any subsequence,

one concludes that the limit of �⇤
L
, as L ! 0+, exits and

lim
L!0+

�
⇤
L
=
q
<a>

�1
H

<µ>A =
p
<a�1>A<µ>A.

Remark 6. As a matter of fact, the sharp lower bound

lim inf
L!0+

c
⇤
L
� 2

p
<a>H <µ>A

can be obtained by using another method.1 It consists in proving that, if (Ln)n2N
is a sequence of positive real numbers such that limn!+1 c

⇤
Ln

= lim infL!0+ c
⇤
L
,

then the solutions uLn of (9) with L = Ln and speeds c
⇤
Ln

converge, after suit-
able normalization and up to extraction of a subsequence, to a solution u of the
homogenized equation

@u

@t
=< a >H

@
2
u

@x2
+ <f(·, u)>A (35)

such that u(t, x) = U(x+ ct), where c = lim infL!0+ c
⇤
L
. Furthermore, U is increa-

sing, U(�1) = 0, U(+1) is the unique positive root of <f(·, U(+1))>A= 0. Since
the function u 7!<f(·, u)>A /u is decreasing over (0,+1) and since the minimal
speed of usual travelling front for (35) is equal to 2

p
<a>H<µ>A, this implies

that lim infL!0+ c
⇤
L
� 2

p
<a>H<µ>A.

This convergence result has its own interest. Actually, its proof requires technical
extra-arguments which are too long to be included in details in the present paper
and which will be the purpose of a forthcoming paper. We just sketch here the main
ideas: (i) proof of the uniform convergence of the positive solutions pLn of (6) to
the unique positive zero p of <f(·, p)>A= 0, (ii) proof of H1

loc
(R⇥R) estimates for

the functions uLn , aLn

@uLn
@x

and @uLn
@t

, which are independent of n, (iii) passage to
the limit, up to extraction of a subsequence, and convergence of the functions uLn

to a travelling front u(t, x) = U(x + ct) of (35), satisfying the right conditions at
±1.

1The authors thank the referee for pointing out this fact.
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4. Monotonicity of the minimal speeds c
⇤
L
near the homogenization limit.

This section is devoted to the proof of Theorem 2.2. Before going further in the
proof, we recall that for each L > 0, the minimal speed c

⇤
L
is given by the variational

formula

c
⇤
L
= min

�>0

k(�, L)

�
=

k(�⇤
L
, L)

�
⇤
L

,

where �⇤
L
> 0 and k(�, L) is the principal eigenvalue of the elliptic equation (15).

Notice that k(�, L) can be defined for all � 2 R and L > 0.

Step 1: properties of k(�, L) and definition of k̃(�, L). The principal eigenfunc-
tion  �,L of (15) is L-periodic, positive and unique up to multiplication. Denote

��,L(x) =  �,L(Lx)

for all L > 0, � 2 R and x 2 R. Each function ��,L is 1-periodic, positive and it is
the principal eigenfunction of

(a�0
�,L

)0 + 2L�a�0
�,L

+ L�a
0
��,L + L

2
�
2
a��,L + L

2
µ��,L = L

2
k(�, L)��,L,

associated to the principal eigenvalue L
2
k(�, L). But the above problem can be

defined for all � 2 R and L 2 R. That is, for each (�, L) 2 R2, there exists a
unique principal eigenvalue k̃(�, L) and a unique (up to multiplication) principal
eigenfunction �̃(�, L) of

(a�̃0
�,L

)0 + 2L�a�̃0
�,L

+ L�a
0
�̃�,L + L

2
�
2
a�̃�,L + L

2
µ�̃�,L = k̃(�, L)�̃�,L. (36)

Furthermore, �̃�,L is 1-periodic, positive and it can be normalized so that
Z 1

0
�̃
2
�,L

(x)dx = 1 (37)

for all (�, L) 2 R2. By uniqueness of the principal eigenelements, it follows that

8 L > 0, 8 � 2 R, k̃(�, L) = L
2
k(�, L)

and �̃�,L and ��,L are equal up to multiplication by positive constants for each
L > 0 and � 2 R.

Some useful properties of k(�, L) as L ! 0+ shall now be derived from the study
the function k̃. Notice first that, since the coe�cients of the left-hand side of (36)
are analytic in (�, L), the function k̃ is analytic, and from the normalization (37),
the functions �̃�,L also depend analytically in H

2
loc

(R) on the parameters � and L

(see [10, 20]). In particular, the function k is analytic in R⇥ (0,+1). Observe also
that

k̃(�, 0) = 0 and �̃�,0 = 1 for all � 2 R.
Lastly, when � is changed into �� or when L is changed into �L, then the operator
in (36) is changed into its adjoint. But since the principal eigenvalues of the operator
and its adjoint are identical, it follows that

8 (�, L) 2 R2
, k̃(�, L) = k̃(�,�L) = k̃(��, L).

In particular, it follows that

8 (i, j) 2 N2
,

@
i
k̃

@�i
(�, 0) =

@
i
@
2j+1

k̃

@�i@L2j+1
(�, 0) = 0. (38)
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Therefore, for all � 2 R,

k(�, L) =
k̃(�, L)

L2
! 1

2
⇥ @

2
k̃

@L2
(�, 0) as (�, L) ! (�, 0+).

But since this limit is equal to k(�) = �
2
<a>H + <µ>A from Step 2 of the proof

of Theorem 2.1, one then gets that

1

2
⇥ @

2
k̃

@L2
(�, 0) = �

2
<a>H + <µ>A for all � 2 R. (39)

It also follows from (38) that

@
2
k

@�2
(�, L) =

1

L2
⇥ @

2
k̃

@�2
(�, L) ! 1

2
⇥ @

4
k̃

@�2@L2
(�, 0) as (�, L) ! (�, 0+). (40)

From (39) and (40), one deduces that

@
2
k

@�2
(�, L) ! 2 <a>H > 0 as (�, L) ! (�, 0+). (41)

Similarly, as (�, L) ! (�, 0+),
8
>>>>>>>>>><

>>>>>>>>>>:

@k

@L
(�, L) =

@

@L

 
k̃(�, L)

L2

!
! 1

6
⇥ @

3
k̃

@L3
(�, 0) = 0

@
2
k

@�@L
(�, L) =

@

@L

 
1

L2
⇥ @k̃

@�
(�, L)

!
! 1

6
⇥ @

4
k̃

@�@L3
(�, 0) = 0

@
2
k

@L2
(�, L) =

@
2

@L2

 
k̃(�, L)

L2

!
! 1

12
⇥ @

4
k̃

@L4
(�, 0)

(42)

Remark 7. As a byproduct of the fact that k̃ and k are even in �, it follows
that the minimal speed of pulsating fronts propagating from right to left (as in
Definition 1.2) is the same as that of fronts propagating from left to right.

Step 2: properties of c⇤
L
and �⇤

L
in the neighbourhood of L = 0+. Let us first pro-

ve that, for each fixed L > 0, the positive real number �⇤
L
> 0 given in (14) is unique.

Indeed, if there are 0 < �1 < �2 such that

c
⇤
L
=

k(�1, L)

�1
=

k(�2, L)

�2
= min

�>0

k(�, L)

�
,

then k(�, L) = c
⇤
L
� for all � 2 [�1,�2] since k is convex with respect to �. Then

k(�, L) = c
⇤
L
� for all � 2 R by analyticity of the map R 3 � 7! k(�, L). But

k(0, L) = �⇢1,L > 0, which gives a contradiction. Therefore, for each L > 0, �⇤
L
is

the unique minimum of the map (0,+1) 3 � 7! k(�, L)/�.
Furthermore, we claim that L 7! �

⇤
L

and L 7! c
⇤
L

are of class C
1 in a right

neighbourhood of L = 0. Indeed, by definition, �⇤
L
satisfies

F (�⇤
L
, L) :=

@k

@�
(�⇤

L
, L)⇥ �

⇤
L
� k(�⇤

L
, L) = 0. (43)

The function (�, L) 7! F (�, L) is of class C
1 on R ⇥ (0,+1) and @F

@�
(�, L) =

@
2
k

@�2 (�, L)⇥ �. But

�
⇤
L
! �

⇤ =
q

<a>
�1
H

<µ>A > 0 as L ! 0+
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from Remark 5, and

@
2
k

@�2
(�⇤

L
, L) ! 2 <a>H > 0 as L ! 0+

from (41). Therefore, from the implicit function theorem, the map L 7! �
⇤
L
is of

class C1 in an interval (0, L0) for some L0 > 0. As a consequence of formula (14),
the map L 7! c

⇤
L
is also of class C1 on (0, L0).

For each L 2 (0, L0), one has

dc
⇤
L

dL
=

✓
1

�
⇤
L

⇥ @k

@�
(�⇤

L
, L)� k(�⇤

L
, L)

(�⇤
L
)2

◆
⇥ d�

⇤
L

dL
+

1

�
⇤
L

⇥ @k

@L
(�⇤

L
, L)

=
1

�
⇤
L

⇥ @k

@L
(�⇤

L
, L)

by definition of �⇤
L

and formula (14). But �⇤
L

! �
⇤
> 0 and @k

@L
(�⇤

L
, L) ! 0 as

L ! 0+ from (42). Thus,
dc

⇤
L

dL
! 0 as L ! 0+.

On the other hand, it follows from (41), (42) and (43) that

d�
⇤
L

dL
=

1

�
⇤
L
⇥ @

2
k

@�2
(�⇤

L
, L)

⇥
✓
@k

@L
(�⇤

L
, L)� �

⇤
L
⇥ @

2
k

@�@L
(�⇤

L
, L)

◆
! 0

as L ! 0+. Therefore,

d
2
c
⇤
L

dL2
=

d�
⇤
L

dL
⇥
✓
� 1

(�⇤
L
)2

⇥ @k

@L
(�⇤

L
, L) +

1

�
⇤
L

⇥ @
2
k

@�@L
(�⇤

L
, L)

◆

+
1

�
⇤
L

⇥ @
2
k

@L2
(�⇤

L
, L)

! 1

12�⇤
⇥ @

4
k̃

@L4
(�⇤, 0) as L ! 0+,

(44)

from (42).

Step 3: calculation of @
4
k̃

@L4 (�⇤, 0). In this step, we fix �
⇤ =

q
<a>

�1
H

<µ>A.

Since the functions �̃�⇤,L depend analytically on L 2 R in H
2
loc

(R), the expansion

�̃�⇤,L = 1 + L�1 + L
2
�2 + L

3
�3 + L

4
�4 + . . .

is valid in H
2
loc

(R) in a neighbourhood of L = 0, where 1 = �̃�⇤,0 and

�i =
1

i !
⇥ @

i
�̃�⇤,L

@Li

�����
L=0

for each i � 1. We now put this expansion into

(a�̃0
�⇤,L)

0 + 2L�⇤a�̃0
�⇤,L + L�

⇤
a
0
�̃�⇤,L + L

2(�⇤)2a�̃�⇤,L + L
2
µ�̃�⇤,L

= k̃(�⇤, L)�̃�⇤,L

and remember that

k̃(�⇤, 0) =
@k̃

@L
(�⇤, 0) =

@
3
k̃

@L3
(�⇤, 0) = 0
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and
@
2
k̃

@L2
(�⇤, 0) = 2⇥

⇥
(�⇤)2 <a>H + <µ>A

⇤
= 4 <µ>A

from (38) and (39). Since both �̃�⇤,L and k̃(�⇤, L) depend analytically on L, it
follows in particular that

8
>>>>>>><

>>>>>>>:

(a�01)
0 + �

⇤
a
0 = 0,

(a�02)
0 + 2�⇤a�01 + �

⇤
a
0
�1 + (�⇤)2a+ µ = 2 <µ>A,

(a�03)
0 + 2�⇤a�02 + �

⇤
a
0
�2 + (�⇤)2a�1 + µ�1 = 2 <µ>A �1,

(a�04)
0 + 2�⇤a�03 + �

⇤
a
0
�3 + (�⇤)2a�2 + µ�2

= 2 <µ>A �2 +
1

24
⇥ @

4
k̃

@L4
(�⇤, 0)

(45)

in R. Furthermore, each function �i is 1-periodic and, by di↵erentiating the normal-
ization condition k�̃�⇤,Lk2L2(0,1) = 1 with respect to L at L = 0, it follows especially
that Z 1

0
�1 = 0 and

Z 1

0
�2 = �1

2

Z 1

0
�
2
1.

It is then found that, for all x 2 R,

�1(x) = �
⇤ ⇥

✓
�x+ <a>H

Z
x

0

1

a(y)
dy � 1

2
� <a>H

Z 1

0

y

a(y)
dy

◆

and

�
0
2(x) = <µ>A ⇥


x

a(x)
�
Z 1

0

y

a(y)
dy �

Z
x

0

1

a(y)
dy � <a>H

a(x)

Z 1

0

y

a(y)
dy

�

+
1

a(x)
⇥

<a>H

Z 1

0

✓
1

a(y)

Z
y

0
µ(z)dz

◆
dy �

Z
x

0
µ(y)dy

�

+(�⇤)2
✓
x+

1

2

◆
.

Moreover, it follows from the third equation of (45) that, for all x 2 R,

a(x)�03(x) = �2�⇤
Z

x

0
a(y)�02(y)dy � �

⇤
Z

x

0
a
0(y)�2(y)dy

�(�⇤)2
Z

x

0
a(y)�1(y)dy �

Z
x

0
µ(y)�1(y)dy

+2 <µ>A

Z
x

0
�1(y)dy+ <a>H c,

where

c=

Z 1

0


1

a(y)
⇥
✓
2�⇤
Z

y

0
a(z)�02(z)dz+�

⇤
Z

y

0
a
0(z)�2(z)dz+(�⇤)2

Z
y

0
a(z)�1(z)dz

+

Z
y

0
µ(z)�1(z)dz � 2 <µ>A

Z
y

0
�1(z)dz

◆�
dy

On the other hand, by integrating the fourth equation of (45) over the interval
[0, 1], one gets that

1

24
⇥ @

4
k̃

@L4
(�⇤, 0) = �2 <µ>A

Z 1

0
�2 + �

⇤
Z 1

0
a�

0
3 + (�⇤)2

Z 1

0
a�2 +

Z 1

0
µ�2. (46)
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Now, put all the previous calculations into (46). After a lengthy sequence of inte-
grations by parts, it is finally found that

1

24
⇥ @

4
k̃

@L4
(�⇤, 0) =

Z 1

0

A(x)2

a(x)
dx � <a>H

✓Z 1

0

A(x)

a(x)
dx

◆2

,

where

A(x) =

Z
x

0
µ(y)dy + <µ>A<a>H

Z
x

0

1

a(y)
dy � 2 <µ>A x.

From (44), it follows that

d
2
c
⇤
L

dL2
! � := 2

q
<a>H<µ>

�1
A

⇥
"Z 1

0

A(x)2

a(x)
dx � <a>H

✓Z 1

0

A(x)

a(x)
dx

◆2
#

as L ! 0+. Cauchy-Schwarz inequality yields � � 0. Furthermore, � = 0 if and
only if A is constant. But since A(0) = 0, the condition � = 0 is equivalent to
A

0(x) = 0 for all x, which means that

µ(x)

<µ>A

+
<a>H

a(x)
= 2 for all x 2 R.

In particular, if µ is constant and a is not constant (resp. if a is constant and µ is

not constant), then this condition is not satisfied, whence limL!0+
d
2
c
⇤
L

dL2 > 0 in this
case. That completes the proofs of Theorem 2.2 and Corollary 1. ⇤
Remark 8. In the case when <µ>A= 0 and µ 6⌘ 0, then ⇢1,L < 0 for each L > 0,
and the minimal speed c

⇤
L
of pulsating traveling fronts is well-defined and it is still

positive. ¿From the arguments developed in this section and in the previous one,
one can check that, in this case,

c
⇤
L
! 0+, �

⇤
L
! 0+,

d�
⇤
L

dL
!
r

�

<a>H

> 0 and
dc

⇤
L

dL
! 2

p
� <a>H > 0

as L ! 0+, where

� =

Z 1

0

A(x)2

a(x)
dx � <a>H

✓Z 1

0

A(x)

a(x)
dx

◆2

> 0

and A(x) =

Z
x

0
µ(y)dy. Therefore, the speeds c

⇤
L
are increasing in a right neigh-

bourhood of L = 0 but, in this case, the variation is of the first order. Notice that

the formula limL!0+
dc

⇤
L

dL
= 2

p
� <a>H is coherent with the numerical calculations

done by Kinezaki, Kawasaki and Shigesada in [21] (see Figure 3b with <µ>A= 0,
that is A = 0 under the notations of [21]).

5. Proof of Theorem 2.3 . As in the proofs of the previous theorems, we use the
following formula for the minimal speed:

c
⇤
z
= min

�>0

kz(�)

�
=

kz(�⇤z)

�⇤
z

, (47)

where kz(�) is defined as the unique real number such that there exists a positive
L0-periodic function  satisfying:

 
00 + 2�  0 + �

2
 + µz(x) = kz(�) in (0, L0). (48)
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Setting '(x) = e
�x
 (x), the above equation and periodicity conditions become

equivalent to: 8
><

>:

'
00 + µz(x)' = kz(�)' in (0, L0),

'(L0) = e
�L0'(0),

'
0(L0) = e

�L0'
0(0),

(49)

which therefore admits, for every positive �, a unique solution (', kz(�)) with ' > 0
satisfying the normalisation condition '(0) = 1.

Let � > 0 be fixed. System (49), together with the normalization condition
'(0) = 1, is equivalent to:

8
>>>>>><

>>>>>>:

'
00 = (kz(�)�m)' on [0, l/2),

'
00 = kz(�)' on [l/2, l/2 + z),

'
00 = (kz(�)�m)' on [l/2 + z, l + z),

'
00 = kz(�)' on [l + z, L0),

'(0) = 1, '(L0) = e
�L0'(0), '0(L0) = e

�L0'
0(0).

(50)

For each z 2 [0, L0 � l], let �⇤
z
be defined by the formula (47). We have the

following lemma:

Lemma 5.1. Assume that l > 3L0/4. Then, for all z 2 [0, L0 � l], we have
kz(�⇤z) > m.

Proof. Let us divide equation (48) by  and integrate by parts over [0, L0]. Using
the L0-periodicity of  , we obtain:

Z
L0

0

| 0|2

 2
+ L0�

2 +

Z
L0

0
µz(x)dx = L0kz(�).

Thus,

kz(�) � �
2 +

1

L0

Z
L0

0
µz(x)dx = �

2 +m
l

L0
. (51)

From (47) and (51) and since, from (18), c⇤
z
 2

p
m, we get:

(�⇤
z
)2 +m

l

L0
 kz(�

⇤
z
)  2�⇤

z

p
m.

Thus, (�⇤
z
)2 � 2�⇤

z

p
m+ml/L0  0, which implies that

�
⇤
z
�

p
m�

p
m�ml/L0.

Using (51), we finally get

kz(�
⇤
z
) � 2m(1�

p
1� l/L0) > m,

as soon as l > 3L0/4. ⇤

We now turn to the proof of Theorem 2.3 and we assume that l 2 (3L0/4, L0).
Using the fact that ' 2 C

1(R), a straightforward but lengthy computation shows
that, whenever kz(�) > m, system (50) is equivalent to

F (z,�, kz(�))

G(z, kz(�))
= 0,
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where F and G are two functions, defined respectively in [0, L0 � l] ⇥ (0,+1) ⇥
[m,+1) and [0, L0 � l]⇥ [m,+1) by:

F (z,�, s) = 4(2s�m)
p
s
p
s�m sinh(l

p
s�m) sinh(↵

p
s)

+m
2 cosh(�

p
s)(1� cosh(l

p
s�m))

+8(s2 �ms)[cosh(l
p
s�m) cosh(↵

p
s)� cosh(�L0)]

+m
2 cosh(↵

p
s)(cosh(l

p
s�m)� 1),

(52)

and

G(z, s) = m
p
s cosh(l

p
s�m) [4 sinh(↵

p
s)(s/m� 1)

+ (sinh(↵
p
s)� sinh(�

p
s))
�
1� 1/ cosh(l

p
s�m)

�⇤

+m
p
s�m sinh(l

p
s�m) cosh(↵

p
s)


4s

m
� 1 +

cosh(�
p
s)

cosh(↵
p
s)

�
,

(53)

with ↵ := L0 � l and � := L0 � l � 2z.
Each factor in the expression (53) is positive, as soon as s > m, for z 2 [0, L0 � l].

Thus, whenever kz(�) > m, system (50) is equivalent to the simpler equation

F (z,�, kz(�)) = 0. (54)

Furthermore, from Krein-Rutman theory, since the eigenfunction  in (48) is pos-
itive, kz(�) is the largest real eigenvalue of the operator  7!  

00 + 2�  0 + �
2
 +

µz(x) . This result, implies that, for each z 2 [0, L0 � l], and each � > 0, kz(�) is
the largest real root of equation (54), as soon as kz(�) > m.

From equation (52), we easily see that

lim
s!+1

F (z,�, s) = +1, (55)

for all z 2 [0, L0 � l] and � > 0. Moreover, di↵erentiating (52) with respect to z,
we obtain

@F

@z
(z,�, s) = 2m2p

s sinh(
p
s(L0 � l � 2z))

⇥
cosh(l

p
s�m)� 1

⇤
.

Thus, for all s > m, and � > 0,

@F

@z
(z,�, s) > 0 for z 2 [0, (L0 � l)/2), (56)

and
@F

@z
(z,�, s) < 0 for z 2 ((L0 � l)/2, L0 � l].

Now, take z1 < z2 in [0, (L0 � l)/2], and assume that c⇤
z1

 c
⇤
z2
. It follows from

formula (47) that kz2(�) � c
⇤
z2
�, for all � > 0. In particular,

kz2(�
⇤
z1
) � c

⇤
z2
�
⇤
z1

� c
⇤
z1
�
⇤
z1

= kz1(�
⇤
z1
). (57)

From Lemma 5.1, we know that kz1(�
⇤
z1
) > m. Thus, (57) implies kz2(�

⇤
z1
) >

m. From the above discussion, kz2(�
⇤
z1
) is therefore the largest real root of the

equation F (z2,�⇤z1 , kz2(�
⇤
z1
)) = 0, and, similarly, kz1(�

⇤
z1
) is the largest real root of

F (z1,�⇤z1 , kz1(�
⇤
z1
)) = 0. Using (55) and (56), and since 0  z1 < z2  (L0 � l)/2,

we obtain kz2(�
⇤
z1
) < kz1(�

⇤
z1
), which contradicts (57). Therefore, c⇤

z
is a decreasing

function of z in [0, (L0 � l)/2]. Similar arguments imply that c
⇤
z
is an increasing

function of z in [(L0 � l)/2, L0 � l]. This concludes the proof of Theorem 2.3. ⇤



HOMOGENIZATION AND FRAGMENTATION 21

REFERENCES

[1] H. Berestycki and F. Hamel, Front propagation in periodic excitable media, Comm. Pure
Appl. Math., 55 (2002), 949-1032. MR1900178

[2] H. Berestycki, F. Hamel and N. Nadirashvili, The principal eigenvalue of elliptic operators
with large drift and applications to nonlinear propagation phenomena, Comm. Math. Phys.,
253 (2005), 451–480.

[3] H. Berestycki, F. Hamel and N. Nadirashvili, The speed of propagation for KPP type problems.
I - Periodic framework, J. Europ. Math. Soc., 7 (2005), 173–213. MR2127993

[4] H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment
model : I - Species persistence, J. Math. Biol., 51 (2005), 75–113. MR2214420

[5] H. Berestycki, F. Hamel and L. Roques, Analysis of the periodically fragmented environment
model : II - Biological invasions and pulsating travelling fronts, J. Math. Pures Appl., 84
(2005), 1101–1146. MR2155900

[6] L.A. Ca↵arelli, K.-A. Lee and A. Mellet, Singular limit and homogenization for flame propaga-
tion in periodic excitable media, Arch. Ration. Mech. Anal., 172 (2004), 153–190. MR2058162

[7] L.A. Ca↵arelli, K.-A. Lee and A. Mellet, Homogenization and flame propagation in periodic
excitable media: the asymptotic speed of propagation, Comm. Pure Appl. Math., 59 (2006),
501–525. MR2199784

[8] R.S. Cantrell and C. Cosner, “Spatial Ecology via Reaction-Di↵usion Equations”, Series In
Mathematical and Computational Biology, John Wiley and Sons, Chichester, Sussex UK,
2003. MR2191264

[9] Y. Capdeboscq, Homogenization of a neutronic critical di↵usion problem with drift, Proc.
Royal Soc. Edinburgh, 132 (2002), 567–594. MR1912416

[10] C. Conca and M. Vanninathan, Homogenization of periodic structures via Bloch decomposi-
tion, SIAM J. Appl. Math., 57 (1997), 1639–1659. MR1484944

[11] M. El Smaily, Pulsating travelling fronts: Asymptotics and homogenization regimes, Europ.
J. Appl. Math., 19 (2008), 393–434. MR2431698

[12] P.C. Fife, “Mathematical Aspects of Reacting and Di↵using Systems”, Springer Verlag, 1979.
MR0527914

[13] R.A. Fisher, The wave of advance of advantageous genes, Ann. Eugenics, 7 (1937), 355–369.
[14] F. Hamel, Qualitative properties of monostable pulsating fronts : exponential decay and

monotonicity, J. Math. Pures Appl., 89 (2008), 355–399. MR2401143
[15] F. Hamel and L. Roques, Uniqueness, exponential behavior and stability of KPP pulsating

fronts, Preprint, 2008.
[16] S. Heinze, Homogenization of flame fronts, Preprint IWR, Heidelberg, 1993.
[17] S. Heinze, Wave solution to reaction-di↵usion systems in perforated domains, Z. Anal. An-

wendungen, 20 (2001), 661–670. MR1863939
[18] S. Heinze, Large convection limits for KPP fronts, Preprint.
[19] S. Heinze, G. Papanicolaou and A. Stevens, Variational principles for propagation speeds in

inhomogeneous media, SIAM J. Appl. Math., 62 (2001), 129–148. MR1857539
[20] T. Kato, “Perturbation Theory for Linear Operators”, 2nd edition, Springer, 1984.

MR1335452
[21] N. Kinezaki, K. Kawasaki and N. Shigesada, Spatial dynamics of invasion in sinusoidally

varying environments, Popul. Ecol., 48 (2006), 263–270.
[22] N. Kinezaki, K. Kawasaki, F. Takasu and N. Shigesada, Modeling biological invasion into

periodically fragmented environments, Theor. Popul. Biol., 64 (2003), 291–302.
[23] A.N. Kolmogorov, I.G. Petrovsky and N.S. Piskunov, Étude de l’équation de la di↵usion avec
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