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1. Introduction and main results
In this paper, we are interested in the study of the following problem
Lu:=—Au(x)+ (—A)’u(x)+qg(x)-Vulx)+ax)u= f(x) in &

9
M _0 on 99 (1.1)
ov

Nou=0 on RM\Q,

with a mixed diffusion and a new type of Neumann boundary conditions. The new boundary
condition is NVyu =0 on RY \ , where N;u — known as the nonlocal normal derivative of u is
given by

u(x) —u(y)

Q

Nsu(x) =Cy g

The diffusion term is a superposition of the classical Laplacian (local diffusion) and the fractional
Laplacian (—A)° for certain values of s € (0, 1) that will be specified later. It is well known that
the fractional Laplacian represents a nonlocal diffusion in the medium.

We recall that the operator (—A)*, with s € (0, 1), stands for the fractional Laplacian and it is
defined for compactly supported function u : RN — R of class c? by

sy . u(x) —u(y)
(=AY u(x)=Cn; 51551 / X — Nt dy (1.3)
RN\ B, (x)

with the same normalization constant Cy s as in (1.2) given by

& +s)

ST (1.4)

N ¢
Cys:= 72255

ou
The boundary conditions in (1.1) consist of the classical Neumann boundary condition 35 = 0

on dQ (v is the inward unit normal on 9€2) and the nonlocal boundary condition Nu :E)) (see
[8]) on RV \ ©. The classical Neumann condition states that there is no flux through the boundary
of the domain. On the other hand, the nonlocal boundary condition Nyu = O states that if a
particle is in RV \ , it may come back to any point y € € with the probability density of jumping
from x to y being proportional to |x — y|_N ~25 A detailed description of (1.1) is given in [9].
The condition Nyu = 0 is interpreted in [9] as a condition that arises from the superposition of
Brownian and Lévy processes.
The PDE

—Aux) + (=A)’u+qg(x)-Vulx)+a(x)u= f(x) in Q (1.5)

has been extensively studied when ¢ = 0 and the boundary condition is of Dirichlet type. That is,
u=0in R" \ Q. Existence and regularity of solutions for (1.5), as well as maximum principles,
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are among the results obtained in [3], [4], [5], and [12], where the advection ¢ is absent and the
boundary condition is of Dirichlet type. The authors of this paper studied (1.5) in the recent work
[6], where an advection term is present and (1.5) is coupled with the Dirichlet condition u =0
onR\ Q.

The recent work [7] considers (1.5) with ¢ =0 and a = 0 to provide spectral properties of
the mixed diffusion operator. The work [8] considers a purely nonlocal diffusion and provides
existence results for the problem with nonlocal Neumann conditions. It is important to note that
[8] does not consider a PDE with a mixed diffusion and it does not account for advection.

The domain and the coefficients. Throughout this paper, we assume that the domain €2 is an
open bounded connected subset of R"Y with smooth boundary 3. The coefficients ¢ and a are
assumed to be uniformly Holder continuous with a > 0 and not identically zero.

The normal derivative of u on 9<2. Our solutions will, in general, be C 1 (ﬁ) but the extension
(& defined later) will not be sufficiently smooth. Hence to compute 9,u(x) on 92, we are using

dyu(x) = 1i1(1)1+ uxo + tv(t())) — M(XO),
t—

where v(x) is the unit inward normal to d€2 at x € 9€2.
We prove the following results for problem (1.1).

Theorem 1.1. Ler Q be an open bounded set of RN with smooth boundary and f € LP ().
Then,

N -1

1. §
¥ 2N
WP (©);

1 1
2. if p> N and 3 <s< 3 + 35 problem (1.1) admits a unique solution u Wz’p(Q).
14

1 1
<s < 3 and N < p < -2 problem (1.1) admits a unique solution u €
—2s

2. The extension #
We begin with the following extension definition for u € c(Q).

Definition 2.1. Let u € ¢! () and define the function & on R" as

N u(x) if xeQ
ulx)= N = 2.1
uy(x) it xeR"\Q,
where
u(y)
——d
|x_y|N+2s y
xeRV\ Q. (2.2)

Q

up(x) = I ,
/ |x _ y|N+2s dy
Q
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Remark 2.2. We note that ;7 (x) = 0 for all x e RV \ Q.

Let Kq : 2 x Q2 — R be the measurable (regional) kernel given by

Ka(x,y):= +ka(x, y) (2.3)

|x_y|N+2s

with
1

ko(x,y) = i dz, X,y EQ. 2.4)

— #IN+2s|y — ,|N+2s 4
i b= 2y = [ s
Q

We now recall the following results that lead to integration by parts in a fractional setting from

[2]:

Lemma 2.3 (/2]). Let u, v : RY - R be two functions such that Nyv =0 on RN \ﬁ. Then

//(u(x) —u(y) (k) —v(y)Ka(x,y) dxdy
Q

Q
~ ~ 2.5
[ TSI ) 22
Q

|x — y| N2

From Lemma 2.3 and [8, Lemma 3.3], we deduce the integration by parts formula

/ @) —u () () —v(y)

Ix_y|N+23

_ AV ~
dxdy —/v( AU dx + / v Nt dx 2.6)
Q RM\Q
for u and v being two C? bounded functions in RV, .
Let N < p < 0o and suppose u € Wz’p(Q) and hence u is CO’I(Q). Then note that % is

smooth near x for any x ¢ Q. So the oonly real question on the smoothness of i is when x ¢ Q
and §(x) =dist(x,dR) < 1. For x ¢ Q, let x € 3Q be such that

|x — x| = inf |z — x|.
€082

Lemma 2.4. Let Q be an open bounded set of RN with smooth boundary and let N < p < 00
and suppose u € WP () with lullw2r < 1. The following estimates are all independent of u.

(i) For0 <s < 1/2 there is some C such that for all x € RN \ Q with 8(x) < 1 we have

[Vui(x)| < %
(8(x))1=2s

1’q(IRN)forall l<g<

oc

Therefore, u € W, — after applying the co-area formula.

1—2s
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(ii) If s=1/2thenu € Wlacq(RN)forall 1 <gq <oo0.
(iii) Let 1/2 < s < 1. Then, there is some C > 0 such that |Vi(x)| < C on RV,

Proof. Let x e RV \ Q with §(x) < 1. For simplicity, we set

Flx) = / =y N2y,
Q

Since u € W7 (2) with p > N, we have that u € CO’1(§). It follows from [8, Proposition 5.2]
and the regularity of © that i is continuous in RY . Moreover, a direct computation shows that

F(x))?V . _N-2s _N-25—
EOIE — [ —u@l =372y [ v =372 20 = yyay
Q

+ / lx — yI "V Hay / @) —u(y)lx — y| V2 (x — y)dy.

We now use the bound on u given by |u(y) — u(x)| < Co|y — x| to give

(F(x>)2|w1(x)| ly —
T N+2s | |N+2s |x |N+2s+1 dy

ly — X|
+ 0/ / dy.
| |N+2r J |x_y|N+2x+l

Now note that for y € Q we have |x — x| < |x — y| by the definition of X and hence we have

ly =X =ly —x|+Ix =X 2]y — x|.

It follows using the above inequality that

(F(X))ZIVul(X)l
T N+2s |x_ |N+23 74 |x_ |N+23+1 dy

+C1/| y|V+2s /|x_ |N+2v

Noticing that the second term in the right hand side is just (F (x))z, we have

1 1
/|x_y|N+2s—ldy/ |x_y|N+2s+ldy
Q

Vi ()] 5
——<C C
N42s ~C1TE (Fx))2

Q2.7)
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Now, it well knov&gl from [1, Lemma 2.1] that there are constants C; > 0 and C, > 0 such that
for any x € RN \ 2, we have

Cimin{(8(x))™%*, $(x) ™V "F} < F(x) < Comin{(8(x)) ">, (5(x)) "V ">}, (2.8)
With the assumption §(x) < 1, x € RN \5, this reduces to
Ci(3(x) ™ < F(x) < C2(8(x)) . 2.9)

We have the more general result that for T > 0 there is some C1, C> > 0 such that for x ¢ Q but
with & (x) small we have

)

Cy / 1
d . 2.10
BT SQ v = B (10)

We now distinguish three cases: s € (0,1/2), s =1/2ors € (1/2, 1).

Case (i): 0 <s < 1/2. Set Ry = 2diam(£2), where diam(2) is the diameter of 2. Since Q is
bounded and §(x) < 1, x e RV \ €, we have that 2 C Bog,+1(x). It follows that

1 1 2Ro+1
_ —2s _ 1-2
Q Byry+1(0) 0
Putting (2.9), (2.11) and (2.10) together, we get
Vi (x) G
Pl ¢, Tk
N +2s x))t—=s

We then apply the coarea formula now to get the desired result.

Case (ii): s = 1/2. We know from (2.7) that

1 1
iy ——d
/Ix—yIN+2 y/lx—le Y
Q

Q
IVui(x)] = C1 + C2 F)2

and this gives combining (2.9) and (2.10),

1
Vil =€+ G [ ay.
J |x =yl

We now estimate the last term. Since 2 C Bygy+1(x) and x ¢ Q2 with §(x) < 1. Then we have

o) / L e / 1 ol <2R0+1>
X) = EEE——— _— = n .
-y V= 2Vdz 5(x)

yeQ {z:8(x)<|z|<2Rop+1}
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Then we have, after using the co-area formula,

q
G(x)dx < C1 / (m (M)) dx
5(x)

{x¢Q,8(x)<1} {x¢Q:8(x)<1}

1
q
Cq/ / {ln<2RO+l>} do(x) | dt
8(x)
0

{x¢Q:8(x)=t}

1
q
Cq/ / {m(zROt“)} do(x) | dr
0

{x¢Q:6(x)=t}

There is some C > 0 such that [{x ¢ Q:§(x) =t}| < C for all 0 <t < 1, where |A| refers the
N — 1 measure of A. From this we see (after doing a change of variables r = 1/t that we have

T (In(2Ro + D))

Gx)dx <C 5
,

{x¢Q,8(x)<1} 1

dr,

and this is finite for any 1 < g < co. Therefore, for any x € RY and |x] < R, we have

/|Vﬁ(x)|q dx <Cg
Bpg

This shows that i € W)Y (R") forall 1 < ¢ < oo.

Case (iii): 1/2 < s < 1. For x ¢ Q, we have from (2.7) that

1 1

/ _ N+2s71dy/ N
Vi1 ()] 5 5 X
— <C1+C

N+2s — (F(x))?

Now, since Q2 c RV \ Bs(x)(x) for all x € Q°, we compute for s > 1/2,

'S}
! 71 —2s 1-2s
/mdyf / |Z|N+2S7] dz:c / ,0 d,0=C3(x) .
Q@ R™\By(x) d(x)

This combined with (2.9) and (2.10) yield

[V (x)]

<C; + Cy.
N+2s — ! 4

Hence, for all x € RV \ © we have
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Vui(x)|=C. O

Lemma 2.5. The following results hold:

1
<s<1/2and N < p <

N —
1. Suppose

o Then, the mapping u — (—A)*U is con-
—2s

tinuous and compact from W2P(Q) to LP ().

1 1 ~
2. Suppose p > N and 1/2 <s < > + 35" The mapping u — (—A)*U is continuous and
p

compact from W2P(Q) to LP(Q).

Proof. 1. For the convenience of the reader we show the continuity and the compactness in
separate steps. Let u € W2 P(Q) with lullw2.r(q) < 1 and let x € 2 and then note we have

(=AY G =T+ 11+ 111
where
u(x) —u(y)
I(u)(x) = Ty
{yeuly—xI<1}
11 () (x) = / Mdy

y |x _ y|N+2s ’
{yeRM\Q:|y—x|<1}

u(x) —ﬁ(y)d
|x _ y|N+2s Y-

and I11(u)(x)= /
{y:ly—x=1}
Note that

Clx —yl
[ (u)(x)| < m

{yg:ly—x|=<1}

dy < C,

. 1
since s < 3 Also, note that

C

[TT(u)(x)] = m

{y:ly—x|=1}

dy,

since # is bounded on RY and hence 111 (1)(x)| is bounded in €2 by some C. We now estimate
I11(u). Using z=y — x we have

e s [ S s,

lzI=1

Note that
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1
G+ 2) — ) < I2] / VAGr + 12)d.
0

Hence, we have

/III(M)(X)Ipdx
Q

p

1
5/ / IZIN%/Wﬂ(x+tz)ldtdz dx
Q \[zl=l 0
1
<C / / W% / |Vu(x+1z)|Pdtdzdx  (Jensen’s inequality applied twice)
Q Jzi<I 0
1
=C/ / WV% /|Vﬁ(x+tz)|”dx dzdt
0 |z|=1 Q
1
§C/ / Ileﬁ / Vi o)|Pdx | dzdt,
0 Jz|=1 lx|=R

for some large R and hence we have

/|II(u)(x)|”dx§C2 / VU (x)|Pdx.
Q

[x|<R

Combining this with the results on 7 (x) and 111 (u), we see that (—A)*% € L?(£2) and is con-
tinuous from W7 ().

We now consider the compactness. Since W2P(Q) is a reflexive space its sufficient to show
that if u,, — 0 in W>P(Q) then (—A)*%,, — 0in LP (). Let u,, — 0 in W>P () and hence it
converges to zero in WP () and uniformly in 2.

(F (X)) Vil (x)

N = / (Um () — um @) |x — y| V"2 dy / x — TN — y)dy
Q Q

4 / =y "V 2dy / (U ®) — DI — ¥V 2"2(x — y)dy.
Q Q

From this we see that |V, (x)| — 0 a.e. in R" and note that we can use the result of Lemma 2.4
with the dominated convergence theorem to see that i, — 0 in whp (Bg) forall0 < R < oo.
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Let x € €2 and then note

(=AU (x) = J1 () (x) + LTI (1) (x)
where

U (X) — m (y)

T ) () = @) () + T (1) () = Py

{y:ly—x|=1}

As before, we can write this as

/|J1(um)(X)|”dx
Q

1
1 ~
SC]/ / Wﬁ / |Vum(x+tz)|pdx dZd.X
}

0 {lz|=1 xeQ

<G / Vi ()P dx,
|x|<R

for some large R and we know this goes to zero from the earlier results.
Let R > 1 be big and note we have

|t ()] + [t ()]

11T () ()] < g e

{y:1=|y—x|<R}
+

dy

[t (X)| + [ (¥)]
|x _ y|N+23

y:ly=x|=R}

/ |t ()| + [tim (V)]

|x — y|N+2s dy+CR™,

{y:1=<|y—x|<R}

where C is from the fact that |, (x)| < C; on RV (independent of m). From this we see that

p

dx

/|]II(Mm)(x)|pdx§CpR_2sP—{—Cp/ |’7m(x)|+|ﬁm(y)|d
Q

|x _ y|N+2x
Q@ \I=|y—x|=R

P
—2sp ~ 1
<CpR +Cp 2 sup |ty (2)] Wdz dx

£1<R
Q ¢ |z|>1

and note that the second term goes to zero when m — oco. Hence, we have
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1imsup/|111(um)(x)|pdxSC,,R_zsP,
m
Q

and consequently / [T11(u)(x)|Pdx — O since we can set R — 0o.
Q

2. We now take 1/2 < s < 1 and for these cases we split the integral in the definition of the
fractional Laplacian as

dz

(—AYii(x) = C12\7,s / [ (x) —u(x + Z|)]|;/|-+[Z(X) —u(x —2)]
RV )

dz

|Z|N+2s

_ Cws i / [6(x) — B + 2)] + [(x) — i (x — 2)]
- 2 i=1

n Cn.s / [U(x) —u(x +2)]+ [Ux) —ux —z2)] J

2 |Z|N+23 %
{zeRN:|z|> 1}

where fori =1, -- - , 4, the sets Ai are defined as

Al={z:lzl < Lx+z,x—z€Q),

A={z:lzl<Lix+2¢Q,x—z€Q),

AB=(z:lzl<lLx+zeQx—-2¢Q),

Ai:{z:lzlf1,x+z¢Q,x—z§éQ}.
We first estimate the following

P

/ / [ (x +z) +u(x —2) —2L~t()€)|dZ dx

|Z|N+25
x€Q \{zeRN: |z]>1}

First note that sup |#(z)| < sup |u(x)| and hence the above quantity is bounded,

zeRN xeQ
p
/ / et +|:|(1\)/C+;Z) —~ 2u(x>|dz dx < C“u”‘pj{/lp(g).
xeQ \{zeRN: [z]>1}
We now estimate the integrals over Ai fori=1,---,4.
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The Al term. Let 1/2 <s < 1, u € W>P() with |lully2, < 1 and let v denote is WP (2)

extension to all of R which is compactly supported. Using a density argument we assume u
and v are smooth. We want to estimate

p

(x +z)+u(x —z)— Zﬁ(x)|d
|Z|N+23 2

dx,

x€Q2 \zeAl

and note we can replace u with u in A)]( and then we can replace u with v. We now estimate this
quantity. First note that for |z|] < 1 we have

11
[v(x +z) —v(x) — Vo(x) - z| < |z|2//|D2v(x+trz)|drdt,
0 0
and from this we see that
11
[v(x +2) +v(x —z) —2v(x)| < |Z|2//|D2v(x:ttrz)|dtdt,
0 0

where the & indicates there are two terms we need to consider. Then we have

p

/ lW(x+2)+u(x —z) — Zﬁ(x)|dZ

|Z|N+2s dx

xeQ \zeAl

is bounded above by

p

11
/ /IzI_N_zs+2 //|D2v(x:i:trz)|drdt dz | dx
00

xeRN  \zeAl

and we can apply Jensen’s inequality twice to get this bounded above by

1 1
C, / /Izl_N_zs“Lz//lDzv(x:I:trz)lpdtdtdzdx
00

xeRN zeAl

and by Fubini we see this bounded above by

1 1
c// / |z| TN —2+2 /IDzv(x:I:trz)lpdx dzdtdr,
00

lz|<1 RN
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and the Extension Theorem (see [10, Theorem 1, Page 259]) we have the term in the brackets
bounded by

/ ID*0(0)|Pdx < Cllullya, g
RN
and this gives us the desired bound, that is
P
|t (x +2) +u(x —z) — 2u(x)| »
/ |z|N+2s dz [ dx = Cllully,z )

x€Q \zeAl

The Ai term for i = 2,3, 4. Note thatif z € Ai fori =2, 3,4, we must have |z| > §(x). In what
follows we will estimate

P
|i(x +2) — 0 (x)| 4
| Z|N+2s < X
X€Q \zeAl
The same argument can be used to also estimate
P
i (x —2) —u(x)|
/ —IZIN”‘Y dz | dx

X€Q \ zeAL

since the only fact we will use will be that |z] > §(x). So to estimate the full quantity we group
the three terms into the following pairings

[W(x +2) —a(x)]+ [u(x — z) —u(x)]

and then estimate

p

[u(x +2) +u(x —z) — Zﬁ(x)ld
/ |Z|N+2s <

dx for i=2,---,3.

xeQ ZEA,';
. . 1
We split the proof into two cases: s = 3 and s € (1/2,1).

1
The case s = 7 Let 2 <i <4 and note that we have

p

/ |u(x + 2) —ﬁ(x)ldz dx

|Z|N+l
XeQ \zeAL
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p
fo |VU(x + tz)dt
AW A K
xeR ZEA’
p
1 ~
Vu(x +tz)dt
= fo|(—)dz dx for some o > 0 small, picked later
|z|N=o|z]
XeQ \zeAL
p
fo |Vi(x + tz)dt
ap sz dx
(3(X)) |zl
xeQ zeAL
1 Vi(x +tz)|Pdt
<C / GO / fo | (| N o ) dz | dx (applying Jensen’s inequality twice)
XEQ ze AL
1~
1 |Vii(x + tz)|Pdt
<< | o |/ ! EREE b
xeQ s(x)<lz|=1
1 1 Vu P
t
~of [awa| | St
0 |z|=1 {xeQ:s(x)=lzl}

We now fix 0 < |z] <1 and 0 < < 1 and note for 1 < g < co we have

/ (8 (x))er = Q/|VM(x+tZ)| " o (5(x))“pq’dx

{xeQ:8(x)<|z|}

and so for fixed ¢ we can take o > 0 small enough so that apg’ < 1 and the internal involving
the distance function is bounded and the other integral is bounded (independent of z and ¢) after
considering the earlier gradient bound on #. This shows that

p

/ i (x +2) —u(x)|

2]V dz | dx

xe ZEA;
is bounded.

The case s € (1/2,1). Let 2 <i <4 and u be as above. Recalling for z € A; we have |z]| > §(x)
we have
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p
[i(x 4 z) — u(x)|
/ W(iz dZ
xeQ \zeAL
P
1 ~
Jo IV (x +12)|dt
S/ / |Z|N+2s—1 dx
Q
P
1 ~
Jo IVU(x +t2)|dt
:/ VB Ta) ) dz| dx a>0
Q

Al

3 IVii(x 4 12)|d1
/(S(x))“P / |z|N+2s—1-a dz | dx

IA

1
1 Viu(x +tz)|Pdt
<C / B / fo ||Z|b]tv( oy lz_)i dz | dx (Jensen’s inequality applied twice)

If we now assume that |Vi| < C then we get this is bounded above by

1 1
C/5(X)“1’ /|Z|N+zs_1_adz dx,

xe ZEAL

and since A; C{z:|z] £1,]|z| > §(x)} then to have this bounded its sufficient that «p < 1 and
1
2s — 1 —a < 0. Hence we see its sufficient that 2s — 1 < —. The compactness proof follows the

same ideas as the previous range of s. O

The following result is a maximum principle that we will use in the proof of existence of a
solution.

Theorem 2.6. Let @ C RY be an open bounded set, q and a be uniformly Holder continuous
with a(x) > 0 in Q. Suppose u € W2’p(S2) is a solution of

Lu=0 in <,
du
ov
Niu=0 on RN\ Q.

=0 on 09, 2.12)

Then, i =0 in RV.
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Proof_. Let u denote the solution and, for notation, we also let # denote % outside of €. Sgppose
xo € 2 such that u(xg) = irglzfu. We first rule out xo € 992. If xo € 9€2, then we take x,,, ¢ Q2 such

that x,,, - xo as m — +o00. Using the nonlocal boundary condition we get

u(y) — uxm)
ly _xm|N+2S

Passing to the limit, we see that

u(y) — u(xp)
|y _ xO|N+25

which shows that u = C = const. is constant in §2 and hence constant in RY . Then note from the
equation we have a(x)C = 0 in 2 and this shows that u = C = 0 provided a(x) is not identically
zero which we have assumed and hence we are done.

We now suppose xq € €2 is such that u(xp) = igf u and we suppose u(xg) < 0.

We can also suppose that u(xg) < 18115 u. Note that, from the definition of u, we get u(x) >

u(xo) forall x e RV \ Q.
Fix o > 0 such that u(xg) + 100 < rslgznu and we also assume u(xg) + 100 < 0. For ¢ > 0

small set Q, ={x € Q:8(x) > ¢} and ', = {x € 2 :5(x) < ¢}. By continuity there is some
g0 > 0 such that

u(xg) + 80 < infu.
&

For x ¢ Q we have

u(y) u(y)
"‘(x)/| |N+2s /|x |N+2s y+ / |x_y|N+2sdy

Q\I'g,
= (u(xo) + 80) / mdy—i—u(xo) / mdy
2\Ieg
_M(XO)/| |N+2sdy+ 0/ |x _y|N+25dy
g,
which gives
1
80 FSO |x_y‘N+23dy

u(x) > u(xp) +

1
Jo pmmdy

From this we can show there is some ¢, > 0 (without loss of generality we can take cg, < 1)
such that u(x) > u(xp) + 8o cg, for all x ¢ Q.
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Let 1 denote a standard radial mollifier with n, the appropriately scaled function whose sup-
port is B, and set u®(x) = (e * u)(x) forx € RY. Forall 0 < ¢ < &9 we have

. £ .
inf u?2 > infu,
39% e

and also we have infu® — u(xg) as T — 0. From this we see there is some 0 < & < &g such that
Q

T

for all 0 < & < &1 we have

infu? + 60 <u(xg) + 80 < %nfu,
€0

(S

but by the monotonicity of & — ilpf u we have
&

infu? + 60 < infu < infu

Q: Te, T,

for all 0 < ¢ < &1 and hence we have

. e . 3
infu2 +60 < inf u?,
Q% Q¢

for 0 < ¢ < &1 and hence the minimum is contained in the interior of Q%. We now want to show

£ & 8
thatrginu7 <u2(x)forallx e RY.LetO<e < ﬁ with:
5

u? (x0) < u(xo) + 8¢y (2.13)
We consider the three cases:

(i) x € Q with 8(x) < % (i) x ¢ Q with 8(x) < % and (iii) x ¢ Q with §(x) > %

I3
Case (i). Here, we have x € Q with §(x) < 7 So in this case we have

o= [ om0 -xua.

ly—x|<5
and note the integral can be decomposed as
ns(y —xu(y)dy + / ns(y = x)u(y)dy
ly—x|<5,yeQ ly—x|<5,y¢SQ
and from this we see that
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U2 (x) = (u(xo) +80¢y,) / ns(y —x)dy

ly—x|<%
=u(xg) + 8ocg,

£
> u? (xo)

£

uz.

=

> in
T Qe

I

Case (ii). We have

(@) (x) = / s (y —x)u(y)dy + / ns (v —x)u(y)dy

ly—x|<5,yeQ ly—x|<5,y¢Q

—

>

infu / s (y = x)dy + (u(xo) + 8ocey) / ns(y —x)dy

£
2

._J

ly—x|<5,yeQ ly—x|<%.y¢Q

<mfuz+6o> [ ono-naytaentsoey [ no-nd
ly—x|<5.,yeQ ly—x|<5.y¢Q

1r1fu2 +6o> / ’i%(y—X)deru%(xo) / ns (y —x)dy

ly—x|<5,yeQ ly—x|<5,y¢Q

A%
o=y
I Eh
<
(Sl

because u%(xo) > glfu% and / n%(y —x)dy =1.

2 e
ly—xl<3

Case (iii). This follows similarly.
From the above we have, for small enough &, that u%(x%) = rginu% (some xs € Q%) and
%
u%(x%) + 60 < aigf u?. Also note we have (take T = ¢/2) L(u®)(x) =0 in Q; and at x; we

have
—Au"(xg) + (=A)'u" (xr) + q(xe) - Vu' (x0) = —a(x)u’ (x;) = 0. (2.14)

But —Au®(x;) <0, Vu' (x;) = 0 and note that

. u(xs) —u3(y)
Caruteg= [ SRy,

jxg — y|NF2
yeRN :
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£ £
and note y > u? (x%) — u2(y) is continuous in y on RV, nonpositive and not identically zero.

From this we see that (—A)Su% (x%) < 0 and this contradicts (2.14). The proof of Theorem 2.6
is completed. O

3. Proof of existence of a solution

This section is dedicated to the proof of Theorem 1.1. We apply the method of continuity
under the Neumann boundary condition.

Proof of Theorem 1.1. For u € Wz'p(Q) and y € R, we define
Lyux)=—-Au+y(—A)ux)+ax)ux)+q-Vulx), xeQ
and we consider the family of indexed problems

Lyu=f in

Ju 3.1
— =0 on d%.
av

Let A be the set

4 y €[0,1]: 3C, > O such that for all f € L?(2), (3.1) has a solution
= . 3.2)
u € WHP(Q) such that [|ully2.p gy < Cyll fllr()

In (3.2), we take the constant Cy, to be the smallest constant such that [luly2.,q) < Cy |l fllLr (@)

holds for all functions f € L”(£2). In other words, if C,, > & > 0 then there exists f; € Co’a(ﬁ)
such that

lullwzr @) = (Cy =l fellLr- (3.3)

By classical theory, 0 € A (see [11, section 2.4]). Our goal is to show that .4 is both open and
closed and since [0, 1] is connected we then see that A € {#, [0, 1]}, and since its non empty, we
must have A = [0, 1]. In particular 1 € A which corresponds to the result we are trying to prove.

A is closed. Let y;, € A with y,, — y and let C;,, = C,,, denote constant associated with C,,.
We first consider the case where {C,,} is bounded. Let f € L?(2) with || f||» = 1. Since y,, €
A there is some u,, € W>?(Q) which satisfies (3.1), with y,, in place of y, and |[uy |ly2, <
Cull fllLr = Cp,. Note we can rewrite the problem as

—Aupy +auy +q -V = f — ym (=AU, inQ, (3.4)

with dyu,, = 0 on 9L2. Since {C,,} is bounded then we have {u,,} bounded in WZ’P(Q)

and by passing to a subsequence we can assume that u, — u in W2P () and e llyor <

liminf ||u, |2, < C1. Also note by our earlier compactness result we have (—A)*#, —
m

(=AW in LP(2) and this (along with the above weak w2 convergence) is sufficient con-
vergence to pass to the limit in (3.4). This shows that y € A.
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We now consider the case of C,,, — 0o. Then, there is some f;,, € L”(Q2) and u,, € Wz’p(Q)
which solves Ly, u,, = fp, in Q with 9,u,, =0 on €2 and

lumllwzr = (Con — DIl finllLe.

By normalizing we can assume |lum || y2.»(q) = 1 and hence || fyu[|L» — 0. By passing to subse-

quences we can assume that u,, — u in w2p (f2) and strongly in whp (2). As before we rewrite
the equation for u,, by

—Auy +auy, +q -V = frn — vm (=AU, in Q, (3.5)
with 9,u,, =0 on 3. If u = 0 then note the right hand side of (3.5) converges to zero in L (£2)
and by standard elliptic theory we have u,, — 0 in WP () which contradicts the normalization
of u,,. We now assume u # 0. By compactness we can pass to the limit in (3.5) to see that
ue Wz’p(Q)\{O} satisfies L, u = 0 in § with d,u = 0 on 92 which contradicts Theorem 2.6.
A is open. Let yy € A and take |¢| small; when yy € {0, 1} we need to restrict the sign of €. Our

goal is to show that y = yy + ¢ € A. Fix f € LP(Q2) with | f||r = 1 and since yy € A there is
some vg € Wz”’(Q) which solves L, v = f in Q with 9, v9 = 0 on 3d€2. We look for a solution

of (3.1) of the form u = vg + ¢. Writing out the details one sees we need ¢ € W2P(Q) to satisfy
Lyyp = —e(—=A)Tp—e(—A)*¢ in€, (3.6)
with 9,¢ = 0 on 0€2. Define the operator J.(¢) = ¥ where i satisfies
LV = —e(—A)'Ty —e(—A)¢  inQ, (3.7)
with 9,% = 0 on 92. We claim that for small enough ¢ that J, is a contraction mapping on
W27 () and hence by the Contraction Mapping Principle there is some ¢ € W27 () with
Je(¢) = ¢. From (3.6) one would then get a w2 (£2) bound on ¢ and hence we’d get the desired

bound on u. We first note that J; is into W>? (£2) after noting the right hand side of (3.6) belongs
to L? (). Let ¢; € W>P () and v; = J.(¢;) and then note we have

LyW2—y) =—e(=A (G2 — 1) inQ,
with the desired boundary condition. Then we have
12 — Yillwzr < Coylell(—A) (G2 — @D lILr < CyylelCliga — il

and hence we see of |¢| small that J; is a contraction on w2p (£2) and this completes the proof
of Theorem 1.1. O
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