

Available online at www.sciencedirect.com

Journal of Differential Equations

Journal of Differential Equations 423 (2025) 97-117

www.elsevier.com/locate/jde

Existence and regularity results for a Neumann problem with mixed local and nonlocal diffusion

Craig Cowan^a, Mohammad El Smaily^{b,*}, Pierre Aime Feulefack^b

^a Department of Mathematics, University of Manitoba, Winnipeg, MB, Canada ^b Department of Mathematics, University of Northern British Columbia, Prince George, BC, Canada

Received 3 July 2024; revised 18 December 2024; accepted 20 December 2024

Abstract

In this paper, we consider an elliptic problem driven by a mixed local-nonlocal operator with drift and subject to nonlocal Neumann condition. We prove the existence and uniqueness of a solution $u \in W^{2, p}(\Omega)$ of the considered problem with L^p -source function when p and s are in a certain range.

© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

MSC: 35A09; 35B50; 35B65; 35R11; 35J67; 47A75

Keywords: Maximum principle; Operators of mixed order with drift; Regularity

Corresponding author.

https://doi.org/10.1016/j.jde.2024.12.029

E-mail addresses: craig.cowan@umanitoba.ca (C. Cowan), mohammad.elsmaily@unbc.ca (M. El Smaily), pierre.feulefack@aims-cameroon.org (P.A. Feulefack).

^{0022-0396/} © 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

1. Introduction and main results

In this paper, we are interested in the study of the following problem

$$fLu := -\Delta u(x) + (-\Delta)^{s} u(x) + q(x) \cdot \nabla u(x) + a(x)u = f(x) \quad \text{in} \quad \Omega$$
$$\frac{\partial u}{\partial v} = 0 \quad \text{on} \quad \partial \Omega \qquad (1.1)$$
$$\mathcal{N}_{s} u = 0 \quad \text{on} \quad \mathbb{R}^{N} \setminus \overline{\Omega},$$

with a mixed diffusion and a new type of Neumann boundary conditions. The new boundary condition is $\mathcal{N}_s u = 0$ on $\mathbb{R}^N \setminus \overline{\Omega}$, where $\mathcal{N}_s u$ — known as the nonlocal normal derivative of u is given by

$$\mathcal{N}_{s}u(x) = C_{N,s} \int_{\Omega} \frac{u(x) - u(y)}{|x - y|^{N + 2s}} \, dy \qquad x \in \mathbb{R}^{N} \setminus \overline{\Omega}.$$
(1.2)

The diffusion term is a superposition of the classical Laplacian (local diffusion) and the fractional Laplacian $(-\Delta)^s$ for certain values of $s \in (0, 1)$ that will be specified later. It is well known that the fractional Laplacian represents a nonlocal diffusion in the medium.

We recall that the operator $(-\Delta)^s$, with $s \in (0, 1)$, stands for the fractional Laplacian and it is defined for compactly supported function $u : \mathbb{R}^N \to \mathbb{R}$ of class C^2 by

$$(-\Delta)^{s} u(x) = C_{N,s} \lim_{\varepsilon \to 0^{+}} \int_{\mathbb{R}^{N} \setminus B_{\varepsilon}(x)} \frac{u(x) - u(y)}{|x - y|^{N + 2s}} \, dy$$
(1.3)

• •

with the same normalization constant $C_{N,s}$ as in (1.2) given by

$$C_{N,s} := \pi^{-\frac{N}{2}} 2^{2s} s \frac{\Gamma(\frac{N}{2} + s)}{\Gamma(1 - s)}.$$
(1.4)

The boundary conditions in (1.1) consist of the classical Neumann boundary condition $\frac{\partial u}{\partial v} = 0$ on $\partial \Omega$ (v is the inward unit normal on $\partial \Omega$) and the nonlocal boundary condition $\mathcal{N}_s u = 0$ (see [8]) on $\mathbb{R}^N \setminus \Omega$. The classical Neumann condition states that there is no flux through the boundary of the domain. On the other hand, the nonlocal boundary condition $\mathcal{N}_s u = 0$ states that if a particle is in $\mathbb{R}^N \setminus \overline{\Omega}$, it may come back to any point $y \in \Omega$ with the probability density of jumping from x to y being proportional to $|x - y|^{-N-2s}$. A detailed description of (1.1) is given in [9]. The condition $\mathcal{N}_s u = 0$ is interpreted in [9] as a condition that arises from the superposition of Brownian and Lévy processes.

The PDE

$$-\Delta u(x) + (-\Delta)^s u + q(x) \cdot \nabla u(x) + a(x)u = f(x) \text{ in } \Omega$$
(1.5)

has been extensively studied when $q \equiv 0$ and the boundary condition is of Dirichlet type. That is, $u \equiv 0$ in $\mathbb{R}^N \setminus \Omega$. Existence and regularity of solutions for (1.5), as well as maximum principles,

are among the results obtained in [3], [4], [5], and [12], where the advection q is absent and the boundary condition is of Dirichlet type. The authors of this paper studied (1.5) in the recent work [6], where an advection term is present and (1.5) is coupled with the Dirichlet condition $u \equiv 0$ on $\mathbb{R} \setminus \overline{\Omega}$.

The recent work [7] considers (1.5) with $q \equiv 0$ and $a \equiv 0$ to provide spectral properties of the mixed diffusion operator. The work [8] considers a purely nonlocal diffusion and provides existence results for the problem with nonlocal Neumann conditions. It is important to note that [8] does not consider a PDE with a mixed diffusion and it does not account for advection.

The domain and the coefficients. Throughout this paper, we assume that the domain Ω is an open bounded connected subset of \mathbb{R}^N with smooth boundary $\partial\Omega$. The coefficients q and a are assumed to be uniformly Hölder continuous with $a \ge 0$ and not identically zero.

The normal derivative of u on $\partial \Omega$. Our solutions will, in general, be $C^1(\overline{\Omega})$ but the extension $(\widetilde{u} \text{ defined later})$ will not be sufficiently smooth. Hence to compute $\partial_{\nu} u(x)$ on $\partial \Omega$, we are using

$$\partial_{\nu}u(x) = \lim_{t \to 0^+} \frac{u(x_0 + t\nu(x_0)) - u(x_0)}{t},$$

where v(x) is the unit inward normal to $\partial \Omega$ at $x \in \partial \Omega$.

We prove the following results for problem (1.1).

Theorem 1.1. Let Ω be an open bounded set of \mathbb{R}^N with smooth boundary and $f \in L^p(\Omega)$. Then,

- 1. if $\frac{N-1}{2N} < s < \frac{1}{2}$ and $N , problem (1.1) admits a unique solution <math>u \in W^{2,p}(\Omega)$;
- 2. *if* p > N and $\frac{1}{2} \le s < \frac{1}{2} + \frac{1}{2p}$, problem (1.1) admits a unique solution $u \in W^{2,p}(\Omega)$.

2. The extension \tilde{u}

We begin with the following extension definition for $u \in C^{0,1}(\overline{\Omega})$.

Definition 2.1. Let $u \in C^{0,1}(\overline{\Omega})$ and define the function \widetilde{u} on \mathbb{R}^N as

$$\widetilde{u}(x) = \begin{cases} u(x) & \text{if } x \in \overline{\Omega} \\ u_1(x) & \text{if } x \in \mathbb{R}^N \setminus \overline{\Omega}, \end{cases}$$
(2.1)

where

$$u_1(x) := \frac{\int \frac{u(y)}{|x-y|^{N+2s}} dy}{\int \int \frac{1}{|x-y|^{N+2s}} dy}, \qquad x \in \mathbb{R}^N \setminus \overline{\Omega}.$$
(2.2)

Remark 2.2. We note that $\mathcal{N}_s \widetilde{u}(x) = 0$ for all $x \in \mathbb{R}^N \setminus \overline{\Omega}$.

Let $K_{\Omega} : \Omega \times \Omega \to \mathbb{R}$ be the measurable (regional) kernel given by

$$K_{\Omega}(x, y) := \frac{1}{|x - y|^{N + 2s}} + k_{\Omega}(x, y)$$
(2.3)

with

$$k_{\Omega}(x, y) := \int_{\mathbb{R}^{N} \setminus \Omega} \frac{1}{|x - z|^{N + 2s} |y - z|^{N + 2s} \int_{\Omega} \frac{1}{|z - z'|^{N + 2s}} dz'} dz, \qquad x, y \in \Omega.$$
(2.4)

We now recall the following results that lead to integration by parts in a fractional setting from [2]:

Lemma 2.3 ([2]). Let $u, v : \mathbb{R}^N \to \mathbb{R}$ be two functions such that $\mathcal{N}_s v = 0$ on $\mathbb{R}^N \setminus \overline{\Omega}$. Then

$$\int_{\Omega} \int_{\Omega} (u(x) - u(y))(v(x) - v(y))K_{\Omega}(x, y) dxdy$$

$$= C_{N,s} \iint_{Q} \frac{(\widetilde{u}(x) - \widetilde{u}(y))(v(x) - v(y))}{|x - y|^{N + 2s}} dxdy$$
(2.5)

From Lemma 2.3 and [8, Lemma 3.3], we deduce the integration by parts formula

$$\iint\limits_{\mathcal{Q}} \frac{(\widetilde{u}(x) - \widetilde{u}(y))(v(x) - v(y))}{|x - y|^{N + 2s}} \, dx dy = \int\limits_{\Omega} v(-\Delta)^s \widetilde{u} \, dx + \int\limits_{\mathbb{R}^N \setminus \Omega} v \mathcal{N}_s \widetilde{u} \, dx \tag{2.6}$$

for *u* and *v* being two C^2 bounded functions in \mathbb{R}^N .

Let $N and suppose <math>u \in W^{2,p}(\Omega)$ and hence u is $C^{0,1}(\overline{\Omega})$. Then note that \widetilde{u} is smooth near x for any $x \notin \overline{\Omega}$. So the only real question on the smoothness of \widetilde{u} is when $x \notin \Omega$ and $\delta(x) = dist(x, \partial\Omega) < 1$. For $x \notin \overline{\Omega}$, let $\hat{x} \in \partial\Omega$ be such that

$$|x - \hat{x}| = \inf_{z \in \partial \Omega} |z - x|.$$

Lemma 2.4. Let Ω be an open bounded set of \mathbb{R}^N with smooth boundary and let $N and suppose <math>u \in W^{2,p}(\Omega)$ with $||u||_{W^{2,p}} \leq 1$. The following estimates are all independent of u.

(i) For 0 < s < 1/2 there is some C such that for all $x \in \mathbb{R}^N \setminus \overline{\Omega}$ with $\delta(x) < 1$ we have

$$|\nabla u_1(x)| \le \frac{C}{(\delta(x))^{1-2s}}$$

Therefore, $\tilde{u} \in W_{loc}^{1,q}(\mathbb{R}^N)$ *for all* $1 < q < \frac{1}{1-2s}$ — *after applying the co-area formula.*

- (ii) If s = 1/2 then $\tilde{u} \in W^{1,q}_{loc}(\mathbb{R}^N)$ for all $1 \le q < \infty$. (iii) Let 1/2 < s < 1. Then, there is some C > 0 such that $|\nabla \tilde{u}(x)| \le C$ on \mathbb{R}^N .

Proof. Let $x \in \mathbb{R}^N \setminus \overline{\Omega}$ with $\delta(x) < 1$. For simplicity, we set

$$F(x) = \int_{\Omega} |x - y|^{-N - 2s} dy.$$

Since $u \in W^{2,p}(\Omega)$ with p > N, we have that $u \in C^{0,1}(\overline{\Omega})$. It follows from [8, Proposition 5.2] and the regularity of Ω that \tilde{u} is continuous in \mathbb{R}^N . Moreover, a direct computation shows that

$$\frac{(F(x))^2 \nabla u_1(x)}{N+2s} = \int_{\Omega} (u(y) - u(\hat{x})) |x - y|^{-N-2s} dy \int_{\Omega} |x - y|^{-N-2s-2} (x - y) dy$$
$$+ \int_{\Omega} |x - y|^{-N-2s} dy \int_{\Omega} (u(\hat{x}) - u(y)) |x - y|^{-N-2s-2} (x - y) dy$$

We now use the bound on *u* given by $|u(y) - u(\hat{x})| \le C_0 |y - \hat{x}|$ to give

$$\frac{(F(x))^2 |\nabla u_1(x)|}{N+2s} \le C_0 \int_{\Omega} \frac{|y-\hat{x}|}{|x-y|^{N+2s}} dy \int_{\Omega} \frac{1}{|x-y|^{N+2s+1}} dy + C_0 \int_{\Omega} \frac{1}{|x-y|^{N+2s}} dy \int_{\Omega} \frac{|y-\hat{x}|}{|x-y|^{N+2s+1}} dy$$

Now note that for $y \in \Omega$ we have $|x - \hat{x}| \le |x - y|$ by the definition of \hat{x} and hence we have

$$|y - \hat{x}| \le |y - x| + |x - \hat{x}| \le 2|y - x|.$$

It follows using the above inequality that

$$\frac{(F(x))^2 |\nabla u_1(x)|}{N+2s} \le C_1 \int_{\Omega} \frac{1}{|x-y|^{N+2s-1}} dy \int_{\Omega} \frac{1}{|x-y|^{N+2s+1}} dy + C_1 \int_{\Omega} \frac{1}{|x-y|^{N+2s}} dy \int_{\Omega} \frac{1}{|x-y|^{N+2s}} dy.$$

Noticing that the second term in the right hand side is just $(F(x))^2$, we have

$$\frac{|\nabla u_1(x)|}{N+2s} \le C_1 + C_2 \frac{\Omega}{\frac{\Omega}{|x-y|^{N+2s-1}}} dy \int_{\Omega} \frac{1}{|x-y|^{N+2s+1}} dy}{(F(x))^2}.$$
 (2.7)

Now, it well known from [1, Lemma 2.1] that there are constants $C_1 > 0$ and $C_2 > 0$ such that for any $x \in \mathbb{R}^N \setminus \overline{\Omega}$, we have

$$C_1 \min\{(\delta(x))^{-2s}, (\delta(x))^{-N-2s}\} \le F(x) \le C_2 \min\{(\delta(x))^{-2s}, (\delta(x))^{-N-2s}\}.$$
 (2.8)

With the assumption $\delta(x) < 1$, $x \in \mathbb{R}^N \setminus \overline{\Omega}$, this reduces to

$$C_1(\delta(x))^{-2s} \le F(x) \le C_2(\delta(x))^{-2s}.$$
 (2.9)

We have the more general result that for $\tau > 0$ there is some $C_1, C_2 > 0$ such that for $x \notin \overline{\Omega}$ but with $\delta(x)$ small we have

$$\frac{C_1}{(\delta(x))^{\tau}} \le \int\limits_{\Omega} \frac{1}{|x-y|^{N+\tau}} dy \le \frac{C_2}{(\delta(x))^{\tau}}.$$
(2.10)

We now distinguish three cases: $s \in (0, 1/2)$, s = 1/2 or $s \in (1/2, 1)$.

Case (i): 0 < s < 1/2. Set $R_0 = 2\text{diam}(\Omega)$, where $\text{diam}(\Omega)$ is the diameter of Ω . Since Ω is bounded and $\delta(x) < 1$, $x \in \mathbb{R}^N \setminus \overline{\Omega}$, we have that $\Omega \subset B_{2R_0+1}(x)$. It follows that

$$\int_{\Omega} \frac{1}{|x-y|^{N+2s-1}} dy \leq \int_{B_{2R_0+1}(0)} \frac{1}{|z|^{N+2s-1}} dz = C \int_{0}^{2R_0+1} \rho^{-2s} d\rho = C(2R_0+1)^{1-2s}.$$
 (2.11)

Putting (2.9), (2.11) and (2.10) together, we get

$$\frac{|\nabla u_1(x)|}{N+2s} \le C_1 + \frac{C_3}{(\delta(x))^{1-2s}}.$$

We then apply the coarea formula now to get the desired result.

Case (ii): s = 1/2. We know from (2.7) that

$$|\nabla u_1(x)| \le C_1 + C_2 \frac{\int_{\Omega} \frac{1}{|x-y|^{N+2}} dy \int_{\Omega} \frac{1}{|x-y|^N} dy}{(F(x))^2},$$

and this gives combining (2.9) and (2.10),

$$|\nabla u_1(x)| \le C_1 + C_3 \int_{\Omega} \frac{1}{|x-y|^N} dy.$$

We now estimate the last term. Since $\Omega \subset B_{2R_0+1}(x)$ and $x \notin \Omega$ with $\delta(x) < 1$. Then we have

$$G(x) = \int_{y \in \Omega} \frac{1}{|x - y|^N} dy \le C \int_{\{z : \delta(x) \le |z| \le 2R_0 + 1\}} \frac{1}{|z|^N dz} = C \ln\left(\frac{2R_0 + 1}{\delta(x)}\right).$$

Then we have, after using the co-area formula,

$$\int_{\{x \notin \Omega, \delta(x) < 1\}} G(x)^q dx \le C^q \int_{\{x \notin \Omega: \delta(x) < 1\}} \left(\ln\left(\frac{2R_0 + 1}{\delta(x)}\right) \right)^q dx$$
$$= C^q \int_0^1 \left(\int_{\{x \notin \Omega: \delta(x) = t\}} \left\{ \ln\left(\frac{2R_0 + 1}{\delta(x)}\right) \right\}^q d\sigma(x) \right) dt$$
$$= C^q \int_0^1 \left(\int_{\{x \notin \Omega: \delta(x) = t\}} \left\{ \ln\left(\frac{2R_0 + 1}{t}\right) \right\}^q d\sigma(x) \right) dt$$

There is some C > 0 such that $|\{x \notin \Omega : \delta(x) = t\}| \le C$ for all 0 < t < 1, where |A| refers the N - 1 measure of A. From this we see (after doing a change of variables r = 1/t that we have

$$\int_{\{x \notin \Omega, \delta(x) < 1\}} G(x)^q dx \le C \int_{1}^{\infty} \frac{(\ln((2R_0 + 1)r))^q}{r^2} dr$$

and this is finite for any $1 \le q < \infty$. Therefore, for any $x \in \mathbb{R}^N$ and $|x| \le R$, we have

$$\int\limits_{B_R} |\nabla \widetilde{u}(x)|^q \ dx \le C_R$$

This shows that $\widetilde{u} \in W^{1,q}_{loc}(\mathbb{R}^N)$ for all $1 < q < \infty$.

Case (iii): 1/2 < s < 1. For $x \notin \overline{\Omega}$, we have from (2.7) that

$$\frac{|\nabla u_1(x)|}{N+2s} \le C_1 + C_2 \frac{\int\limits_{\Omega} \frac{1}{|x-y|^{N+2s-1}} dy \int\limits_{\Omega} \frac{1}{|x-y|^{N+2s+1}} dy}{(F(x))^2}$$

Now, since $\Omega \subset \mathbb{R}^N \setminus B_{\delta(x)}(x)$ for all $x \in \Omega^c$, we compute for s > 1/2,

$$\int_{\Omega} \frac{1}{|x-y|^{N+2s-1}} \, dy \leq \int_{\mathbb{R}^n \setminus B_{d(x)}} \frac{1}{|z|^{N+2s-1}} \, dz = C \int_{d(x)}^{\infty} \rho^{-2s} \, d\rho = C\delta(x)^{1-2s}.$$

This combined with (2.9) and (2.10) yield

$$\frac{|\nabla u_1(x)|}{N+2s} \le C_1 + C_4.$$

Hence, for all $x \in \mathbb{R}^N \setminus \overline{\Omega}$ we have

Journal of Differential Equations 423 (2025) 97-117

$$|\nabla u_1(x)| \le C. \quad \Box$$

Lemma 2.5. The following results hold:

- 1. Suppose $\frac{N-1}{2N} < s < 1/2$ and $N . Then, the mapping <math>u \mapsto (-\Delta)^s \widetilde{u}$ is continuous and compact from $W^{2,p}(\Omega)$ to $L^p(\Omega)$.
- 2. Suppose p > N and $1/2 \le s < \frac{1}{2} + \frac{1}{2p}$. The mapping $u \mapsto (-\Delta)^s \widetilde{u}$ is continuous and compact from $W^{2,p}(\Omega)$ to $L^p(\Omega)$.

Proof. 1. For the convenience of the reader we show the continuity and the compactness in separate steps. Let $u \in W^{2,p}(\Omega)$ with $||u||_{W^{2,p}(\Omega)} \leq 1$ and let $x \in \Omega$ and then note we have

$$(-\Delta)^s \tilde{u}(x) = I + II + III$$

where

$$I(u)(x) = \int_{\{y \in \Omega: |y-x| \le 1\}} \frac{\tilde{u}(x) - \tilde{u}(y)}{|x-y|^{N+2s}} dy,$$

$$II(u)(x) = \int_{\{y \in \mathbb{R}^N \setminus \overline{\Omega}: |y-x| \le 1\}} \frac{\tilde{u}(x) - \tilde{u}(y)}{|x-y|^{N+2s}} dy,$$

and $III(u)(x) = \int_{\{y: |y-x| \ge 1\}} \frac{\tilde{u}(x) - \tilde{u}(y)}{|x-y|^{N+2s}} dy.$

Note that

$$|I(u)(x)| \le \int_{\{y \notin \Omega: |y-x| \le 1\}} \frac{C|x-y|}{|x-y|^{N+2s}} dy \le C_2,$$

since $s < \frac{1}{2}$. Also, note that

$$|III(u)(x)| \le \int_{\{y:|y-x|\ge 1\}} \frac{C}{|x-y|^{N+2s}} dy,$$

since \tilde{u} is bounded on \mathbb{R}^N and hence |III(u)(x)| is bounded in Ω by some *C*. We now estimate II(u). Using z = y - x we have

$$|II(u)(x)| \leq \int_{|z|\leq 1} \frac{|\widetilde{u}(x+z)-\widetilde{u}(x)|}{|z|^{N+2s}} dz.$$

Note that

Journal of Differential Equations 423 (2025) 97-117

$$|\widetilde{u}(x+z) - \widetilde{u}(x)| \le |z| \int_{0}^{1} |\nabla \widetilde{u}(x+tz)| dt.$$

Hence, we have

$$\begin{split} &\int_{\Omega} |II(u)(x)|^p dx \\ &\leq \int_{\Omega} \left(\int_{|z| \leq 1} \frac{1}{|z|^{N+2s-1}} \int_{0}^{1} |\nabla \widetilde{u}(x+tz)| dt dz \right)^p dx \\ &\leq C \int_{\Omega} \int_{|z| \leq 1} \frac{1}{|z|^{N+2s-1}} \int_{0}^{1} |\nabla \widetilde{u}(x+tz)|^p dt dz dx \quad \text{(Jensen's inequality applied twice)} \\ &= C \int_{0}^{1} \int_{|z| \leq 1} \frac{1}{|z|^{N+2s-1}} \left(\int_{\Omega} |\nabla \widetilde{u}(x+tz)|^p dx \right) dz dt \\ &\leq C \int_{0}^{1} \int_{|z| \leq 1} \frac{1}{|z|^{N+2s-1}} \left(\int_{|x| \leq R} |\nabla \widetilde{u}(x)|^p dx \right) dz dt, \end{split}$$

for some large R and hence we have

$$\int_{\Omega} |II(u)(x)|^p dx \le C_2 \int_{|x| \le R} |\nabla \widetilde{u}(x)|^p dx.$$

Combining this with the results on I(u) and III(u), we see that $(-\Delta)^{s} \widetilde{u} \in L^{p}(\Omega)$ and is continuous from $W^{2,p}(\Omega)$.

We now consider the compactness. Since $W^{2,p}(\Omega)$ is a reflexive space its sufficient to show that if $u_m \rightarrow 0$ in $W^{2,p}(\Omega)$ then $(-\Delta)^s \widetilde{u}_m \rightarrow 0$ in $L^p(\Omega)$. Let $u_m \rightarrow 0$ in $W^{2,p}(\Omega)$ and hence it converges to zero in $W^{1,p}(\Omega)$ and uniformly in Ω .

$$\frac{(F(x))^2 \nabla \widetilde{u}_m(x)}{N+2s} = \int_{\Omega} (u_m(y) - u_m(\hat{x})) |x - y|^{-N-2s} dy \int_{\Omega} |x - y|^{-N-2s-2} (x - y) dy$$
$$+ \int_{\Omega} |x - y|^{-N-2s} dy \int_{\Omega} (u_m(\hat{x}) - u_m(y)) |x - y|^{-N-2s-2} (x - y) dy$$

From this we see that $|\nabla \tilde{u}_m(x)| \to 0$ a.e. in \mathbb{R}^N and note that we can use the result of Lemma 2.4 with the dominated convergence theorem to see that $\tilde{u}_m \to 0$ in $W^{1,p}(B_R)$ for all $0 < R < \infty$.

Let $x \in \Omega$ and then note

$$(-\Delta)^{s}\widetilde{u}_{m}(x) = J_{1}(u_{m})(x) + III(u_{m})(x)$$

where

$$J_1(u_m)(x) = I(u_m)(x) + II(u_m)(x) = \int_{\{y: |y-x| \le 1\}} \frac{\widetilde{u}_m(x) - \widetilde{u}_m(y)}{|x-y|^{N+2s}} dy.$$

As before, we can write this as

$$\begin{split} &\int_{\Omega} |J_1(u_m)(x)|^p dx \\ &\leq C_1 \int_0^1 \int_{\{|z| \le 1\}} \frac{1}{|z|^{N+2s-1}} \left(\int_{x \in \Omega} |\nabla \widetilde{u}_m(x+tz)|^p dx \right) dz dx \\ &\leq C_2 \int_{|x| < R} |\nabla \widetilde{u}_m(x)|^p dx, \end{split}$$

for some large R and we know this goes to zero from the earlier results.

Let R > 1 be big and note we have

$$\begin{split} |III(u_m)(x)| &\leq \int \limits_{\{y:1 \leq |y-x| \leq R\}} \frac{|\widetilde{u}_m(x)| + |\widetilde{u}_m(y)|}{|x-y|^{N+2s}} dy \\ &+ \int \limits_{\{y:|y-x| \geq R\}} \frac{|\widetilde{u}_m(x)| + |\widetilde{u}_m(y)|}{|x-y|^{N+2s}} dy \\ &\leq \int \limits_{\{y:1 \leq |y-x| \leq R\}} \frac{|\widetilde{u}_m(x)| + |\widetilde{u}_m(y)|}{|x-y|^{N+2s}} dy + CR^{-2s}, \end{split}$$

where *C* is from the fact that $|\tilde{u}_m(x)| \leq C_1$ on \mathbb{R}^N (independent of *m*). From this we see that

$$\int_{\Omega} |III(u_m)(x)|^p dx \le C_p R^{-2sp} + C_p \int_{\Omega} \left(\int_{\substack{1 \le |y-x| \le R}} \frac{|\widetilde{u}_m(x)| + |\widetilde{u}_m(y)|}{|x-y|^{N+2s}} dy \right)^p dx$$
$$\le C_p R^{-2sp} + C_p \int_{\Omega} \left(2 \sup_{|\zeta| \le R} |\widetilde{u}_m(\zeta)| \int_{|z| \ge 1} \frac{1}{|z|^{N+2s}} dz \right)^p dx$$

and note that the second term goes to zero when $m \to \infty$. Hence, we have

$$\limsup_{m} \int_{\Omega} |III(u_m)(x)|^p dx \le C_p R^{-2sp},$$

and consequently $\int_{\Omega} |III(u_m)(x)|^p dx \to 0$ since we can set $R \to \infty$.

2. We now take $1/2 \le s < 1$ and for these cases we split the integral in the definition of the fractional Laplacian as

$$\begin{split} (-\Delta)^{s}\widetilde{u}(x) &= \frac{C_{N,s}}{2} \int_{\mathbb{R}^{N}} \frac{[\widetilde{u}(x) - \widetilde{u}(x+z)] + [\widetilde{u}(x) - \widetilde{u}(x-z)]}{|z|^{N+2s}} \, dz \\ &= \frac{C_{N,s}}{2} \sum_{i=1}^{4} \int_{A_{x}^{i}} \frac{[\widetilde{u}(x) - \widetilde{u}(x+z)] + [\widetilde{u}(x) - \widetilde{u}(x-z)]}{|z|^{N+2s}} \, dz \\ &\quad + \frac{C_{N,s}}{2} \int_{\{z \in \mathbb{R}^{N} : |z| > 1\}} \frac{[\widetilde{u}(x) - \widetilde{u}(x+z)] + [\widetilde{u}(x) - \widetilde{u}(x-z)]}{|z|^{N+2s}} \, dz, \end{split}$$

where for $i = 1, \dots, 4$, the sets A_x^i are defined as

$$\begin{split} A_x^1 &= \{ z : |z| \le 1, x + z, x - z \in \Omega \}, \\ A_x^2 &= \{ z : |z| \le 1, x + z \notin \Omega, x - z \in \Omega \}, \\ A_x^3 &= \{ z : |z| \le 1, x + z \in \Omega, x - z \notin \Omega \}, \\ A_x^4 &= \{ z : |z| \le 1, x + z \notin \Omega, x - z \notin \Omega \}. \end{split}$$

We first estimate the following

$$\int_{x\in\Omega} \left(\int_{\{z\in\mathbb{R}^N: |z|>1\}} \frac{|\widetilde{u}(x+z)+\widetilde{u}(x-z)-2\widetilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dx.$$

First note that $\sup_{z \in \mathbb{R}^N} |\widetilde{u}(z)| \le \sup_{x \in \Omega} |u(x)|$ and hence the above quantity is bounded,

$$\int_{x\in\Omega} \left(\int_{\{z\in\mathbb{R}^N: |z|>1\}} \frac{|\widetilde{u}(x+z)+\widetilde{u}(x-z)-2\widetilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dx \le C \|u\|_{W^{2,p}(\Omega)}^p$$

We now estimate the integrals over A_x^i for $i = 1, \dots, 4$.

The A_x^1 term. Let $1/2 \le s < 1$, $u \in W^{2,p}(\Omega)$ with $||u||_{W^{2,p}} \le 1$ and let v denote is $W^{2,p}(\Omega)$ extension to all of \mathbb{R}^N which is compactly supported. Using a density argument we assume u and v are smooth. We want to estimate

$$\int_{x\in\Omega} \left(\int_{z\in A_x^1} \frac{|\widetilde{u}(x+z)+\widetilde{u}(x-z)-2\widetilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dx,$$

and note we can replace \tilde{u} with u in A_x^1 and then we can replace u with v. We now estimate this quantity. First note that for $|z| \le 1$ we have

$$|v(x+z) - v(x) - \nabla v(x) \cdot z| \le |z|^2 \int_0^1 \int_0^1 |D^2 v(x+t\tau z)| d\tau dt,$$

and from this we see that

$$|v(x+z) + v(x-z) - 2v(x)| \le |z|^2 \int_0^1 \int_0^1 |D^2 v(x \pm t\tau z)| d\tau dt,$$

where the \pm indicates there are two terms we need to consider. Then we have

$$\int_{x\in\Omega} \left(\int_{z\in A_x^1} \frac{|\widetilde{u}(x+z) + \widetilde{u}(x-z) - 2\widetilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dx$$

is bounded above by

$$\int_{x\in\mathbb{R}^N} \left(\int_{z\in A^1_x} |z|^{-N-2s+2} \left(\int_0^1 \int_0^1 |D^2 v(x\pm t\tau z)| d\tau dt \right) dz \right)^p dx$$

and we can apply Jensen's inequality twice to get this bounded above by

$$C_{1} \int_{x \in \mathbb{R}^{N}} \int_{z \in A_{x}^{1}} |z|^{-N-2s+2} \int_{0}^{1} \int_{0}^{1} |D^{2}v(x \pm t\tau z)|^{p} d\tau dt dz dx$$

and by Fubini we see this bounded above by

$$C\int_{0}^{1}\int_{|z|\leq 1}^{1}\int_{|z|\leq 1}|z|^{-N-2s+2}\left(\int_{\mathbb{R}^{N}}|D^{2}v(x\pm t\tau z)|^{p}dx\right)dzdtd\tau,$$

and the Extension Theorem (see [10, Theorem 1, Page 259]) we have the term in the brackets bounded by

$$\int_{\mathbb{R}^N} |D^2 v(x)|^p dx \le C \|u\|_{W^{2,p}(\Omega)}^p$$

and this gives us the desired bound, that is

$$\int_{x\in\Omega} \left(\int_{z\in A_x^1} \frac{|\widetilde{u}(x+z)+\widetilde{u}(x-z)-2\widetilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dx \le C \|u\|_{W^{2,p}(\Omega)}^p.$$

The A_x^i term for i = 2, 3, 4. Note that if $z \in A_x^i$ for i = 2, 3, 4, we must have $|z| > \delta(x)$. In what follows we will estimate

$$\int_{x\in\Omega} \left(\int_{z\in A_x^i} \frac{|\widetilde{u}(x+z)-\widetilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dx.$$

The same argument can be used to also estimate

$$\int_{x\in\Omega} \left(\int_{z\in A_x^i} \frac{|\widetilde{u}(x-z)-\widetilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dx$$

since the only fact we will use will be that $|z| > \delta(x)$. So to estimate the full quantity we group the three terms into the following pairings

$$[\widetilde{u}(x+z) - \widetilde{u}(x)] + [\widetilde{u}(x-z) - \widetilde{u}(x)]$$

and then estimate

$$\int_{x\in\Omega} \left(\int_{z\in A_x^i} \frac{|\widetilde{u}(x+z)+\widetilde{u}(x-z)-2\widetilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dx \quad \text{for} \quad i=2,\cdots,3.$$

We split the proof into two cases: $s = \frac{1}{2}$ and $s \in (1/2, 1)$.

The case $s = \frac{1}{2}$. Let $2 \le i \le 4$ and note that we have

$$\int_{x\in\Omega} \left(\int_{z\in A_x^i} \frac{|\widetilde{u}(x+z)-\widetilde{u}(x)|}{|z|^{N+1}} dz \right)^p dx$$

$$\begin{split} &\leq \int\limits_{x\in\Omega} \left(\int\limits_{z\in A_x^i} \frac{\int_0^1 |\nabla \widetilde{u}(x+tz)dt}{|z|^N} dz \right)^p dx \\ &= \int\limits_{x\in\Omega} \left(\int\limits_{z\in A_x^i} \frac{\int_0^1 |\nabla \widetilde{u}(x+tz)dt}{|z|^{N-\alpha}|z|^\alpha} dz \right)^p dx \quad \text{for some } \alpha > 0 \text{ small, picked later} \\ &\leq \int\limits_{x\in\Omega} \frac{1}{(\delta(x))^{\alpha p}} \left(\int\limits_{z\in A_x^i} \frac{\int_0^1 |\nabla \widetilde{u}(x+tz)dt}{|z|^{N-\alpha}} dz \right)^p dx \\ &\leq C \int\limits_{x\in\Omega} \frac{1}{(\delta(x))^{\alpha p}} \left(\int\limits_{z\in A_x^i} \frac{\int_0^1 |\nabla \widetilde{u}(x+tz)|^p dt}{|z|^{N-\alpha}} dz \right) dx \quad \text{(applying Jensen's inequality twice)} \\ &\leq C \int\limits_{x\in\Omega} \frac{1}{(\delta(x))^{\alpha p}} \left(\int\limits_{\delta(x)<|z|\leq 1} \frac{\int_0^1 |\nabla \widetilde{u}(x+tz)|^p dt}{|z|^{N-\alpha}} dz \right) dx \\ &= C \int\limits_{0}^1 \int\limits_{|z|\leq 1} \frac{1}{|z|^{N-\alpha}} \left(\int\limits_{\{x\in\Omega:\delta(x)\leq |z|\}} \frac{|\nabla \widetilde{u}(x+tz)|^p}{(\delta(x))^{\alpha p}} dx \right) dz dt. \end{split}$$

We now fix $0 < |z| \le 1$ and 0 < t < 1 and note for $1 < q < \infty$ we have

$$\int_{\{x\in\Omega:\delta(x)\leq|z|\}}\frac{|\nabla\widetilde{u}(x+tz)|^p}{(\delta(x))^{\alpha p}}dx\leq \left(\int_{\Omega}|\nabla\widetilde{u}(x+tz)|^{pq}dx\right)^{\frac{1}{q}}\left(\int_{\Omega}\frac{1}{(\delta(x))^{\alpha pq'}}dx\right)^{\frac{1}{q'}}$$

and so for fixed q we can take $\alpha > 0$ small enough so that $\alpha pq' < 1$ and the internal involving the distance function is bounded and the other integral is bounded (independent of z and t) after considering the earlier gradient bound on \tilde{u} . This shows that

$$\int_{x \in \Omega} \left(\int_{z \in A_x^i} \frac{|\widetilde{u}(x+z) - \widetilde{u}(x)|}{|z|^{N+1}} dz \right)^p dx$$

is bounded.

The case $s \in (1/2, 1)$. Let $2 \le i \le 4$ and u be as above. Recalling for $z \in A_x^i$ we have $|z| > \delta(x)$ we have

$$\begin{split} &\int_{x\in\Omega} \left(\int_{z\in A_x^i} \frac{|\tilde{u}(x+z)-\tilde{u}(x)|}{|z|^{N+2s}} dz \right)^p dz \\ &\leq \int_{\Omega} \left(\int_{A_x^i} \frac{\int_0^1 |\nabla \tilde{u}(x+tz)| dt}{|z|^{N+2s-1}} dz \right)^p dx \\ &= \int_{\Omega} \left(\int_{A_x^i} \frac{\int_0^1 |\nabla \tilde{u}(x+tz)| dt}{|z|^{N+2s-1-\alpha} |z|^{\alpha}} dz \right)^p dx \quad \alpha > 0 \\ &\leq \int_{\Omega} \frac{1}{(\delta(x))^{\alpha p}} \left(\int_{A_x^i} \frac{\int_0^1 |\nabla \tilde{u}(x+tz)| dt}{|z|^{N+2s-1-\alpha}} dz \right)^p dx \\ &\leq C \int_{\Omega} \frac{1}{(\delta(x))^{\alpha p}} \left(\int_{A_x^i} \frac{\int_0^1 |\nabla \tilde{u}(x+tz)| dt}{|z|^{N+2s-1-\alpha}} dz \right) dx \quad \text{(Jensen's inequality applied twice)} \end{split}$$

If we now assume that $|\nabla \widetilde{u}| \leq C$ then we get this is bounded above by

$$C\int\limits_{x\in\Omega}\frac{1}{\delta(x)^{\alpha p}}\left(\int\limits_{z\in A^i_x}\frac{1}{|z|^{N+2s-1-\alpha}}dz\right)dx,$$

and since $A_x^i \subset \{z : |z| \le 1, |z| > \delta(x)\}$ then to have this bounded its sufficient that $\alpha p < 1$ and $2s - 1 - \alpha < 0$. Hence we see its sufficient that $2s - 1 < \frac{1}{p}$. The compactness proof follows the same ideas as the previous range of *s*. \Box

The following result is a maximum principle that we will use in the proof of existence of a solution.

Theorem 2.6. Let $\Omega \subset \mathbb{R}^N$ be an open bounded set, q and a be uniformly Hölder continuous with $a(x) \ge 0$ in Ω . Suppose $u \in W^{2,p}(\Omega)$ is a solution of

$$Lu = 0 \quad in \quad \Omega,$$

$$\frac{\partial u}{\partial v} = 0 \quad on \quad \partial \Omega,$$

$$\mathcal{N}_{s}u = 0 \quad on \quad \mathbb{R}^{N} \setminus \overline{\Omega}.$$
(2.12)

Then, $\widetilde{u} \equiv 0$ in \mathbb{R}^N .

Proof. Let *u* denote the solution and, for notation, we also let *u* denote \tilde{u} outside of Ω . Suppose $x_0 \in \overline{\Omega}$ such that $u(x_0) = \inf_{\Omega} u$. We first rule out $x_0 \in \partial \Omega$. If $x_0 \in \partial \Omega$, then we take $x_m \notin \overline{\Omega}$ such that $x_m \to x_0$ as $m \to +\infty$. Using the nonlocal boundary condition we get

$$0 = \int_{\Omega} \frac{u(y) - u(x_m)}{|y - x_m|^{N+2s}} dy$$

Passing to the limit, we see that

$$0 = \int_{\Omega} \frac{u(y) - u(x_0)}{|y - x_0|^{N+2s}} dy,$$

which shows that u = C = const. is constant in Ω and hence constant in \mathbb{R}^N . Then note from the equation we have a(x)C = 0 in Ω and this shows that u = C = 0 provided a(x) is not identically zero which we have assumed and hence we are done.

We now suppose $x_0 \in \Omega$ is such that $u(x_0) = \inf_{\Omega} u$ and we suppose $u(x_0) < 0$.

We can also suppose that $u(x_0) < \inf_{\partial \Omega} u$. Note that, from the definition of u_1 , we get $u(x) > u(x_0)$ for all $x \in \mathbb{R}^N \setminus \overline{\Omega}$.

Fix $\sigma > 0$ such that $u(x_0) + 10\sigma < \min_{\substack{\partial \Omega \\ \partial \Omega}} u$ and we also assume $u(x_0) + 10\sigma < 0$. For $\varepsilon > 0$ small set $\Omega_{\varepsilon} = \{x \in \Omega : \delta(x) > \varepsilon\}$ and $\Gamma_{\varepsilon} = \{x \in \Omega : \delta(x) < \varepsilon\}$. By continuity there is some $\varepsilon_0 > 0$ such that

$$u(x_0)+8\sigma<\inf_{\Gamma_{\varepsilon_0}}u.$$

For $x \notin \overline{\Omega}$ we have

$$u(x) \int_{\Omega} \frac{1}{|x-y|^{N+2s}} dy = \int_{\Gamma_{\varepsilon_0}} \frac{u(y)}{|x-y|^{N+2s}} dy + \int_{\Omega \setminus \Gamma_{\varepsilon_0}} \frac{u(y)}{|x-y|^{N+2s}} dy$$
$$\geq (u(x_0) + 8\sigma) \int_{\Gamma_{\varepsilon_0}} \frac{1}{|x-y|^{N+2s}} dy + u(x_0) \int_{\Omega \setminus \Gamma_{\varepsilon_0}} \frac{1}{|x-y|^{N+2s}} dy$$
$$= u(x_0) \int_{\Omega} \frac{1}{|x-y|^{N+2s}} dy + 8\sigma \int_{\Gamma_{\varepsilon_0}} \frac{1}{|x-y|^{N+2s}} dy$$

which gives

$$u(x) \ge u(x_0) + \frac{8\sigma \int_{\Gamma_{\varepsilon_0}} \frac{1}{|x-y|^{N+2s}} dy}{\int_{\Omega} \frac{1}{|x-y|^{N+2s}} dy}.$$

From this we can show there is some $c_{\varepsilon_0} > 0$ (without loss of generality we can take $c_{\varepsilon_0} < 1$) such that $u(x) \ge u(x_0) + 8\sigma c_{\varepsilon_0}$ for all $x \notin \overline{\Omega}$.

Let η denote a standard radial mollifier with η_{ε} the appropriately scaled function whose support is $\overline{B_{\varepsilon}}$ and set $u^{\varepsilon}(x) = (\eta_{\varepsilon} * u)(x)$ for $x \in \mathbb{R}^{N}$. For all $0 < \varepsilon < \varepsilon_{0}$ we have

$$\inf_{\partial\Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}} \geq \inf_{\Gamma_{\varepsilon}} u,$$

and also we have $\inf_{\Omega_{\tau}} u^{\tau} \to u(x_0)$ as $\tau \to 0$. From this we see there is some $0 < \varepsilon_1 < \varepsilon_0$ such that for all $0 < \varepsilon < \varepsilon_1$ we have

$$\inf_{\Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}} + 6\sigma \le u(x_0) + 8\sigma < \inf_{\Gamma_{\varepsilon_0}} u,$$

but by the monotonicity of $\varepsilon \mapsto \inf_{\Gamma_{\varepsilon}} u$ we have

$$\inf_{\Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}} + 6\sigma < \inf_{\Gamma_{\varepsilon_0}} u \le \inf_{\Gamma_{\varepsilon}} u$$

for all $0 < \varepsilon < \varepsilon_1$ and hence we have

$$\inf_{\Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}} + 6\sigma < \inf_{\partial \Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}},$$

for $0 < \varepsilon < \varepsilon_1$ and hence the minimum is contained in the interior of $\Omega_{\frac{\varepsilon}{2}}$. We now want to show that $\min_{\Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}} \le u^{\frac{\varepsilon}{2}}(x)$ for all $x \in \mathbb{R}^N$. Let $0 < \varepsilon < \frac{\varepsilon_1}{10}$ with:

$$u^{\frac{1}{2}}(x_0) < u(x_0) + 8\sigma c_{\varepsilon_0}.$$
(2.13)

We consider the three cases:

(i)
$$x \in \Omega$$
 with $\delta(x) < \frac{\varepsilon}{2}$, (ii) $x \notin \Omega$ with $\delta(x) < \frac{\varepsilon}{2}$ and (iii) $x \notin \Omega$ with $\delta(x) > \frac{\varepsilon}{2}$.

Case (i). Here, we have $x \in \Omega$ with $\delta(x) < \frac{\varepsilon}{2}$. So in this case we have

$$u^{\frac{\varepsilon}{2}}(x) = \int_{|y-x| < \frac{\varepsilon}{2}} \eta_{\frac{\varepsilon}{2}}(y-x)u(y)dy,$$

and note the integral can be decomposed as

$$\int_{|y-x|<\frac{\varepsilon}{2}, y\in\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)u(y)dy + \int_{|y-x|<\frac{\varepsilon}{2}, y\notin\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)u(y)dy$$

and from this we see that

Journal of Differential Equations 423 (2025) 97-117

$$u^{\frac{\varepsilon}{2}}(x) \ge (u(x_0) + 8\sigma c_{\varepsilon_0}) \int_{|y-x| < \frac{\varepsilon}{2}} \eta_{\frac{\varepsilon}{2}}(y-x)dy$$
$$= u(x_0) + 8\sigma c_{\varepsilon_0}$$
$$> u^{\frac{\varepsilon}{2}}(x_0)$$
$$\ge \inf_{\Omega \frac{\varepsilon}{2}} u^{\frac{\varepsilon}{2}}.$$

Case (ii). We have

$$\begin{split} (\tilde{u})^{\frac{\varepsilon}{2}}(x) &= \int\limits_{|y-x|<\frac{\varepsilon}{2}, y\in\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)\tilde{u}(y)dy + \int\limits_{|y-x|<\frac{\varepsilon}{2}, y\notin\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)\tilde{u}(y)dy \\ &\geq \inf\limits_{\Gamma\frac{\varepsilon}{2}} u \int\limits_{|y-x|<\frac{\varepsilon}{2}, y\in\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)dy + (u(x_0) + 8\sigma c_{\varepsilon_0}) \int\limits_{|y-x|<\frac{\varepsilon}{2}, y\notin\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)dy \\ &\geq \left(\inf\limits_{\Omega\frac{\varepsilon}{2}} u^{\frac{\varepsilon}{2}} + 6\sigma\right) \int\limits_{|y-x|<\frac{\varepsilon}{2}, y\in\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)dy + (u(x_0) + 8\sigma c_{\varepsilon_0}) \int\limits_{|y-x|<\frac{\varepsilon}{2}, y\notin\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)dy \\ &\geq \left(\inf\limits_{\Omega\frac{\varepsilon}{2}} u^{\frac{\varepsilon}{2}} + 6\sigma\right) \int\limits_{|y-x|<\frac{\varepsilon}{2}, y\in\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)dy + u^{\frac{\varepsilon}{2}}(x_0) \int\limits_{|y-x|<\frac{\varepsilon}{2}, y\notin\Omega} \eta_{\frac{\varepsilon}{2}}(y-x)dy \\ &\geq \inf\limits_{\Omega\frac{\varepsilon}{2}} u^{\frac{\varepsilon}{2}} \end{split}$$

because $u^{\frac{\varepsilon}{2}}(x_0) \ge \inf_{\Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}}$ and $\int_{|y-x|<\frac{\varepsilon}{2}} \eta_{\frac{\varepsilon}{2}}(y-x)dy = 1.$

Case (iii). This follows similarly.

From the above we have, for small enough ε , that $u^{\frac{\varepsilon}{2}}(x_{\frac{\varepsilon}{2}}) = \min_{\Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}}$ (some $x_{\frac{\varepsilon}{2}} \in \Omega_{\frac{\varepsilon}{2}}$) and $u^{\frac{\varepsilon}{2}}(x_{\frac{\varepsilon}{2}}) + 6\sigma < \inf_{\partial\Omega_{\frac{\varepsilon}{2}}} u^{\frac{\varepsilon}{2}}$. Also note we have (take $\tau = \varepsilon/2$) $L(u^{\tau})(x) = 0$ in Ω_{τ} and at x_{τ} we have

$$-\Delta u^{\tau}(x_{\tau}) + (-\Delta)^{s} u^{\tau}(x_{\tau}) + q(x_{\tau}) \cdot \nabla u^{\tau}(x_{\tau}) = -a(x_{\tau})u^{\tau}(x_{\tau}) \ge 0.$$
(2.14)

But $-\Delta u^{\tau}(x_{\tau}) \leq 0$, $\nabla u^{\tau}(x_{\tau}) = 0$ and note that

$$(-\Delta)^{s} u^{\frac{\varepsilon}{2}}(x_{\frac{\varepsilon}{2}}) = \int_{y \in \mathbb{R}^{N}} \frac{u^{\frac{\varepsilon}{2}}(x_{\frac{\varepsilon}{2}}) - u^{\frac{\varepsilon}{2}}(y)}{|x_{\frac{\varepsilon}{2}} - y|^{N+2s}} dy,$$

and note $y \mapsto u^{\frac{\varepsilon}{2}}(x_{\frac{\varepsilon}{2}}) - u^{\frac{\varepsilon}{2}}(y)$ is continuous in y on \mathbb{R}^N , nonpositive and not identically zero. From this we see that $(-\Delta)^s u^{\frac{\varepsilon}{2}}(x_{\frac{\varepsilon}{2}}) < 0$ and this contradicts (2.14). The proof of Theorem 2.6 is completed. \Box

3. Proof of existence of a solution

This section is dedicated to the proof of Theorem 1.1. We apply the method of continuity under the Neumann boundary condition.

Proof of Theorem 1.1. For $u \in W^{2,p}(\Omega)$ and $\gamma \in \mathbb{R}$, we define

$$L_{\gamma}u(x) = -\Delta u + \gamma (-\Delta)^{s} \tilde{u}(x) + a(x)u(x) + q \cdot \nabla u(x), \quad x \in \Omega$$

and we consider the family of indexed problems

$$\begin{cases} L_{\gamma} u = f & \text{in } \Omega \\ \frac{\partial u}{\partial \nu} = 0 & \text{on } \partial \Omega. \end{cases}$$
(3.1)

Let ${\mathcal A}$ be the set

$$\mathcal{A} := \left\{ \begin{aligned} \gamma \in [0,1] : \ \exists C_{\gamma} > 0 \text{ such that for all } f \in L^{p}(\Omega), (3.1) \text{ has a solution} \\ u \in W^{2,p}(\Omega) \text{ such that } \|u\|_{W^{2,p}(\Omega)} \le C_{\gamma} \|f\|_{L^{p}(\Omega)} \end{aligned} \right\}.$$
(3.2)

In (3.2), we take the constant C_{γ} to be the smallest constant such that $||u||_{W^{2,p}(\Omega)} \leq C_{\gamma} ||f||_{L^{p}(\Omega)}$ holds for all functions $f \in L^{p}(\Omega)$. In other words, if $C_{\gamma} > \varepsilon > 0$ then there exists $f_{\varepsilon} \in C^{0,\alpha}(\overline{\Omega})$ such that

$$\|u\|_{W^{2,p}(\Omega)} \ge (C_{\gamma} - \varepsilon) \|f_{\varepsilon}\|_{L^{p}(\Omega)}.$$
(3.3)

By classical theory, $0 \in \mathcal{A}$ (see [11, section 2.4]). Our goal is to show that \mathcal{A} is both open and closed and since [0, 1] is connected we then see that $\mathcal{A} \in \{\emptyset, [0, 1]\}$, and since its non empty, we must have $\mathcal{A} = [0, 1]$. In particular $1 \in \mathcal{A}$ which corresponds to the result we are trying to prove.

 \mathcal{A} is closed. Let $\gamma_m \in \mathcal{A}$ with $\gamma_m \to \gamma$ and let $C_m = C_{\gamma_m}$ denote constant associated with C_m . We first consider the case where $\{C_m\}$ is bounded. Let $f \in L^p(\Omega)$ with $||f||_{L^p} = 1$. Since $\gamma_m \in \mathcal{A}$ there is some $u_m \in W^{2,p}(\Omega)$ which satisfies (3.1), with γ_m in place of γ , and $||u_m||_{W^{2,p}} \leq C_m ||f||_{L^p} = C_m$. Note we can rewrite the problem as

$$-\Delta u_m + au_m + q \cdot \nabla u_m = f - \gamma_m (-\Delta)^s \widetilde{u}_m \quad \text{in } \Omega, \tag{3.4}$$

with $\partial_{\nu}u_m = 0$ on $\partial\Omega$. Since $\{C_m\}$ is bounded then we have $\{u_m\}$ bounded in $W^{2,p}(\Omega)$ and by passing to a subsequence we can assume that $u_m \rightarrow u$ in $W^{2,p}(\Omega)$ and $||u||_{W^{2,p}} \leq \lim_m \|u_m\|_{W^{2,p}} \leq C_1$. Also note by our earlier compactness result we have $(-\Delta)^s \widetilde{u}_m \rightarrow (-\Delta)^s \widetilde{u}$ in $L^p(\Omega)$ and this (along with the above weak $W^{2,p}$ convergence) is sufficient convergence to pass to the limit in (3.4). This shows that $\gamma \in \mathcal{A}$. We now consider the case of $C_m \to \infty$. Then, there is some $f_m \in L^p(\Omega)$ and $u_m \in W^{2,p}(\Omega)$ which solves $L_{\gamma_m} u_m = f_m$ in Ω with $\partial_{\nu} u_m = 0$ on $\partial \Omega$ and

$$||u_m||_{W^{2,p}} \ge (C_m - 1)||f_m||_{L^p}.$$

By normalizing we can assume $||u_m||_{W^{2,p}(\Omega)} = 1$ and hence $||f_m||_{L^p} \to 0$. By passing to subsequences we can assume that $u_m \rightharpoonup u$ in $W^{2,p}(\Omega)$ and strongly in $W^{1,p}(\Omega)$. As before we rewrite the equation for u_m by

$$-\Delta u_m + au_m + q \cdot \nabla u_m = f_m - \gamma_m (-\Delta)^s \widetilde{u}_m \quad \text{in } \Omega,$$
(3.5)

with $\partial_{\nu}u_m = 0$ on $\partial\Omega$. If u = 0 then note the right hand side of (3.5) converges to zero in $L^p(\Omega)$ and by standard elliptic theory we have $u_m \to 0$ in $W^{2,p}(\Omega)$ which contradicts the normalization of u_m . We now assume $u \neq 0$. By compactness we can pass to the limit in (3.5) to see that $u \in W^{2,p}(\Omega) \setminus \{0\}$ satisfies $L_{\gamma}u = 0$ in Ω with $\partial_{\nu}u = 0$ on $\partial\Omega$ which contradicts Theorem 2.6.

 \mathcal{A} is open. Let $\gamma_0 \in \mathcal{A}$ and take $|\varepsilon|$ small; when $\gamma_0 \in \{0, 1\}$ we need to restrict the sign of ε . Our goal is to show that $\gamma = \gamma_0 + \varepsilon \in \mathcal{A}$. Fix $f \in L^p(\Omega)$ with $||f||_{L^p} = 1$ and since $\gamma_0 \in \mathcal{A}$ there is some $v_0 \in W^{2,p}(\Omega)$ which solves $L_{\gamma_0}v_0 = f$ in Ω with $\partial_{\nu}v_0 = 0$ on $\partial\Omega$. We look for a solution of (3.1) of the form $u = v_0 + \phi$. Writing out the details one sees we need $\phi \in W^{2,p}(\Omega)$ to satisfy

$$L_{\gamma_0}\phi = -\varepsilon(-\Delta)^s \widetilde{v}_0 - \varepsilon(-\Delta)^s \widetilde{\phi} \quad \text{in } \Omega,$$
(3.6)

with $\partial_{\nu}\phi = 0$ on $\partial\Omega$. Define the operator $J_{\varepsilon}(\phi) = \psi$ where ψ satisfies

$$L_{\gamma_0}\psi = -\varepsilon(-\Delta)^s \widetilde{v}_0 - \varepsilon(-\Delta)^s \widetilde{\phi} \quad \text{in } \Omega,$$
(3.7)

with $\partial_{\nu}\psi = 0$ on $\partial\Omega$. We claim that for small enough ε that J_{ε} is a contraction mapping on $W^{2,p}(\Omega)$ and hence by the Contraction Mapping Principle there is some $\phi \in W^{2,p}(\Omega)$ with $J_{\varepsilon}(\phi) = \phi$. From (3.6) one would then get a $W^{2,p}(\Omega)$ bound on ϕ and hence we'd get the desired bound on u. We first note that J_{ε} is into $W^{2,p}(\Omega)$ after noting the right hand side of (3.6) belongs to $L^{p}(\Omega)$. Let $\phi_{i} \in W^{2,p}(\Omega)$ and $\psi_{i} = J_{\varepsilon}(\phi_{i})$ and then note we have

$$L_{\gamma_0}(\psi_2 - \psi_1) = -\varepsilon(-\Delta)^s(\widetilde{\phi}_2 - \widetilde{\phi}_1) \quad \text{in } \Omega,$$

with the desired boundary condition. Then we have

$$\|\psi_2 - \psi_1\|_{W^{2,p}} \le C_{\gamma_0} |\varepsilon| \| (-\Delta)^s (\widetilde{\phi}_2 - \widetilde{\phi}_1) \|_{L^p} \le C_{\gamma_0} |\varepsilon| C \|\phi_2 - \phi_1\|_{W^{2,p}},$$

and hence we see of $|\varepsilon|$ small that J_{ε} is a contraction on $W^{2,p}(\Omega)$ and this completes the proof of Theorem 1.1. \Box

Data availability

No data was used for the research described in the article.

References

- N. Abatangelo, A remark on nonlocal Neumann conditions for the fractional Laplacian, Arch. Math. 114 (6) (2020) 699–708.
- [2] A. Audrito, J.C. Felipe-Navarro, X. Ros-Oton, The Neumann problem for the fractional Laplacian: regularity up to the boundary, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (2022).
- [3] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Partial Differ. Equ. 47 (3) (2022) 585–629.
- [4] S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, Proc. R. Soc. Edinb., Sect. A, Math. 151 (5) (2021) 1611–1641.
- [5] S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, J. Anal. Math. (2023) 1–43.
- [6] C. Cowan, M. El Smaily, P.A. Feulefack, The principal eigenvalue of a mixed local and nonlocal operator with drift, preprint 2023.
- [7] S. Dipierro, E. Proietti Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal. 128 (4) (2022) 571–594.
- [8] S. Dipierro, X. Ros-Oton, E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam. 33 (2) (2017) 377–416.
- [9] S. Dipierro, E. Valdinoci, Description of an ecological niche for a mixed local/nonlocal dispersal: an evolution equation and a new Neumann condition arising from the superposition of Brownian and Lévy processes, Phys. A, Stat. Mech. Appl. 575 (2021) 126052.
- [10] L.C. Evans, Partial Differential Equations, vol. 19, American Mathematical Society, 2022.
- [11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Society for Industrial and Applied Mathematics, 2011.
- [12] X. Su, E. Valdinoci, Y. Wei, J. Zhang, Regularity results for solutions of mixed local and nonlocal elliptic equations, Math. Z. 302 (3) (2022) 1855–1878.