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1. Introduction and main results

In this paper, we are interested in the study of the following problem⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu := −�u(x) + (−�)su(x) + q(x) · ∇u(x) + a(x)u = f (x) in �

∂u

∂ν
= 0 on ∂�

Nsu = 0 on RN \ �,

(1.1)

with a mixed diffusion and a new type of Neumann boundary conditions. The new boundary 
condition is Nsu = 0 on RN \ �, where Nsu �- known as the nonlocal normal derivative of u is 
given by

Nsu(x) = CN,s

ˆ

� 

u(x) − u(y)

|x − y|N+2s
dy x ∈ RN \ �. (1.2)

The diffusion term is a superposition of the classical Laplacian (local diffusion) and the fractional 
Laplacian (−�)s for certain values of s ∈ (0,1) that will be specfied later. It is well known that 
the fractional Laplacian represents a nonlocal diffusion in the medium.

We recall that the operator (−�)s , with s ∈ (0,1), stands for the fractional Laplacian and it is 
dfined for compactly supported function u :RN → R of class C2 by

(−�)su(x) = CN,s lim 
ε→0+

ˆ

RN\Bε(x)

u(x) − u(y)

|x − y|N+2s
dy (1.3)

with the same normalization constant CN,s as in (1.2) given by

CN,s := π− N
2 22ss

�(N
2 + s)

�(1 − s) 
. (1.4)

The boundary conditions in (1.1) consist of the classical Neumann boundary condition 
∂u

∂ν
= 0

on ∂� (ν is the inward unit normal on ∂�) and the nonlocal boundary condition Nsu = 0 (see 
[8]) on RN \�. The classical Neumann condition states that there is no flux through the boundary 
of the domain. On the other hand, the nonlocal boundary condition Nsu = 0 states that if a 
particle is in RN \�, it may come back to any point y ∈ � with the probability density of jumping 
from x to y being proportional to |x − y|−N−2s . A detailed description of (1.1) is given in [9]. 
The condition Nsu = 0 is interpreted in [9] as a condition that arises from the superposition of 
Brownian and Lévy processes.

The PDE

−�u(x) + (−�)su + q(x) · ∇u(x) + a(x)u = f (x) in � (1.5)

has been extensively studied when q ≡ 0 and the boundary condition is of Dirichlet type. That is, 
u ≡ 0 in RN \ �. Existence and regularity of solutions for (1.5), as well as maximum principles, 
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are among the results obtained in [3], [4], [5], and [12], where the advection q is absent and the 
boundary condition is of Dirichlet type. The authors of this paper studied (1.5) in the recent work 
[6], where an advection term is present and (1.5) is coupled with the Dirichlet condition u ≡ 0
on R \ �.

The recent work [7] considers (1.5) with q ≡ 0 and a ≡ 0 to provide spectral properties of 
the mixed diffusion operator. The work [8] considers a purely nonlocal diffusion and provides 
existence results for the problem with nonlocal Neumann conditions. It is important to note that 
[8] does not consider a PDE with a mixed diffusion and it does not account for advection.

The domain and the coefficients. Throughout this paper, we assume that the domain � is an 
open bounded connected subset of RN with smooth boundary ∂�. The coefficients q and a are 
assumed to be uniformly Hölder continuous with a ≥ 0 and not identically zero.

The normal derivative of u on ∂�. Our solutions will, in general, be C1(�) but the extension 
(̃u dfined later) will not be sufficiently smooth. Hence to compute ∂νu(x) on ∂�, we are using

∂νu(x) = lim 
t→0+

u(x0 + tν(x0)) − u(x0)

t
,

where ν(x) is the unit inward normal to ∂� at x ∈ ∂�.
We prove the following results for problem (1.1).

Theorem 1.1. Let � be an open bounded set of RN with smooth boundary and f ∈ Lp(�). 
Then,

1. if 
N − 1

2N
< s <

1

2
and N < p <

1 
1 − 2s

, problem (1.1) admits a unique solution u ∈
W 2,p(�);

2. if p > N and 
1

2
≤ s <

1

2
+ 1 

2p
, problem (1.1) admits a unique solution u ∈ W 2,p(�).

2. The extension ũ

We begin with the following extension definition for u ∈ C0,1(�).

Definition 2.1. Let u ∈ C0,1(�) and dfine the function ̃u on RN as

ũ(x) =
{

u(x) if x ∈ �

u1(x) if x ∈RN \ �,
(2.1)

where

u1(x) := 

ˆ

� 

u(y) 
|x − y|N+2s

dy

ˆ
1 

|x − y|N+2s
dy

, x ∈RN \ �. (2.2)
� 
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Remark 2.2. We note that Nsũ(x) = 0 for all x ∈ RN \ �.

Let K� : � × � →R be the measurable (regional) kernel given by

K�(x, y) := 1 
|x − y|N+2s

+ k�(x, y) (2.3)

with

k�(x, y) :=
ˆ

RN\�

1 

|x − z|N+2s |y − z|N+2s

ˆ

� 

1 
|z − z′|N+2s

dz′
dz, x, y ∈ �. (2.4)

We now recall the following results that lead to integration by parts in a fractional setting from 
[2]:

Lemma 2.3 ([2]). Let u,v : RN →R be two functions such that Nsv = 0 on RN \ �. Then

ˆ

� 

ˆ

� 

(u(x) − u(y))(v(x) − v(y))K�(x, y) dxdy

= CN,s

¨

Q 

(̃u(x) − ũ(y))(v(x) − v(y))

|x − y|N+2s
dxdy

(2.5)

From Lemma 2.3 and [8, Lemma 3.3], we deduce the integration by parts formula

¨

Q 

(̃u(x) − ũ(y))(v(x) − v(y))

|x − y|N+2s
dxdy =

ˆ

� 

v(−�)sũ dx +
ˆ

RN\�
vNs ũ dx (2.6)

for u and v being two C2 bounded functions in RN .
Let N < p < ∞ and suppose u ∈ W 2,p(�) and hence u is C0,1(�). Then note that ũ is 

smooth near x for any x / ∈ �. So the only real question on the smoothness of ũ is when x / ∈ �

and δ(x) = dist (x, ∂�) < 1. For x / ∈ �, let x̂ ∈ ∂� be such that

|x − x̂| = inf 
z∈∂�

|z − x|.

Lemma 2.4. Let � be an open bounded set of RN with smooth boundary and let N < p < ∞
and suppose u ∈ W 2,p(�) with ‖u‖W 2,p ≤ 1. The following estimates are all independent of u.

(i) For 0 < s < 1/2 there is some C such that for all x ∈ RN \ � with δ(x) < 1 we have

|∇u1(x)| ≤ C

(δ(x))1−2s
.

Therefore, ̃u ∈ W
1,q
loc (RN) for all 1 < q <

1 
�- after applying the co-area formula.
1 − 2s
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(ii) If s = 1/2 then ̃u ∈ W
1,q
loc (RN) for all 1 ≤ q < ∞.

(iii) Let 1/2 < s < 1. Then, there is some C > 0 such that |∇ũ(x)| ≤ C on RN .

Proof. Let x ∈ RN \ � with δ(x) < 1. For simplicity, we set

F(x) =
ˆ

� 

|x − y|−N−2sdy.

Since u ∈ W 2,p(�) with p > N , we have that u ∈ C0,1(�). It follows from [8, Proposition 5.2] 
and the regularity of � that ̃u is continuous in RN . Moreover, a direct computation shows that

(F (x))2∇u1(x)

N + 2s
=
ˆ

� 

(u(y) − u(x̂))|x − y|−N−2sdy

ˆ

� 

|x − y|−N−2s−2(x − y)dy

+
ˆ

� 

|x − y|−N−2sdy

ˆ

� 

(u(x̂) − u(y))|x − y|−N−2s−2(x − y)dy.

We now use the bound on u given by |u(y) − u(x̂)| ≤ C0|y − x̂| to give

(F (x))2|∇u1(x)|
N + 2s

≤C0

ˆ

� 

|y − x̂| 
|x − y|N+2s

dy

ˆ

� 

1 
|x − y|N+2s+1 dy

+C0

ˆ

� 

1 
|x − y|N+2s

dy

ˆ

� 

|y − x̂| 
|x − y|N+2s+1 dy.

Now note that for y ∈ � we have |x − x̂| ≤ |x − y| by the definition of x̂ and hence we have

|y − x̂| ≤ |y − x| + |x − x̂| ≤ 2|y − x|.

It follows using the above inequality that

(F (x))2|∇u1(x)|
N + 2s

≤C1

ˆ

� 

1 
|x − y|N+2s−1 dy

ˆ

� 

1 
|x − y|N+2s+1 dy

+C1

ˆ

� 

1 
|x − y|N+2s

dy

ˆ

� 

1 
|x − y|N+2s

dy.

Noticing that the second term in the right hand side is just (F (x))2, we have

|∇u1(x)| ≤ C1 + C2

ˆ

� 

1 
|x − y|N+2s−1 dy

ˆ

� 

1 
|x − y|N+2s+1 dy

2 . (2.7)

N + 2s (F (x))
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Now, it well known from [1, Lemma 2.1] that there are constants C1 > 0 and C2 > 0 such that 
for any x ∈RN \ �, we have

C1min{(δ(x))−2s , (δ(x))−N−2s} ≤ F(x) ≤ C2min{(δ(x))−2s , (δ(x))−N−2s}. (2.8)

With the assumption δ(x) < 1, x ∈ RN \ �, this reduces to

C1(δ(x))−2s ≤ F(x) ≤ C2(δ(x))−2s . (2.9)

We have the more general result that for τ > 0 there is some C1,C2 > 0 such that for x / ∈ � but 
with δ(x) small we have

C1

(δ(x))τ
≤
ˆ

� 

1 
|x − y|N+τ

dy ≤ C2

(δ(x))τ
. (2.10)

We now distinguish three cases: s ∈ (0,1/2), s = 1/2 or s ∈ (1/2,1).

Case (i): 0 < s < 1/2. Set R0 = 2diam(�), where diam(�) is the diameter of �. Since � is 
bounded and δ(x) < 1, x ∈ RN \ �, we have that � ⊂ B2R0+1(x). It follows that

ˆ

� 

1 
|x − y|N+2s−1 dy ≤

ˆ

B2R0+1(0)

1 
|z|N+2s−1 dz = C

2R0+1ˆ

0 

ρ−2s dρ = C(2R0 + 1)1−2s . (2.11)

Putting (2.9), (2.11) and (2.10) together, we get

|∇u1(x)|
N + 2s

≤ C1 + C3

(δ(x))1−2s
.

We then apply the coarea formula now to get the desired result.

Case (ii): s = 1/2. We know from (2.7) that

|∇u1(x)| ≤ C1 + C2

ˆ

� 

1 
|x − y|N+2 dy

ˆ

� 

1 
|x − y|N dy

(F (x))2 ,

and this gives combining (2.9) and (2.10),

|∇u1(x)| ≤ C1 + C3

ˆ

� 

1 
|x − y|N dy.

We now estimate the last term. Since � ⊂ B2R0+1(x) and x / ∈ � with δ(x) < 1. Then we have

G(x) =
ˆ

1 
|x − y|N dy ≤ C

ˆ
1 

|z|Ndz
= C ln

(
2R0 + 1

δ(x) 

)
.

y∈� {z:δ(x)≤|z|≤2R0+1}
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Then we have, after using the co-area formula,

ˆ

{x / ∈�,δ(x)<1}
G(x)qdx ≤ Cq

ˆ

{x / ∈�:δ(x)<1}

(
ln

(
2R0 + 1

δ(x) 

))q

dx

= Cq

1 ˆ

0 

⎛⎜⎝ ˆ

{x / ∈�:δ(x)=t}

{
ln

(
2R0 + 1

δ(x) 

)}q

dσ (x)

⎞⎟⎠dt

= Cq

1 ˆ

0 

⎛⎜⎝ ˆ

{x / ∈�:δ(x)=t}

{
ln

(
2R0 + 1

t

)}q

dσ (x)

⎞⎟⎠dt

There is some C > 0 such that |{x / ∈ � : δ(x) = t}| ≤ C for all 0 < t < 1, where |A| refers the 
N − 1 measure of A. From this we see (after doing a change of variables r = 1/t that we have

ˆ

{x / ∈�,δ(x)<1}
G(x)qdx ≤ C

∞ ˆ

1 

(ln((2R0 + 1)r))q

r2 dr,

and this is finite for any 1 ≤ q < ∞. Therefore, for any x ∈ RN and |x| ≤ R, we have

ˆ

BR

|∇ũ(x)|q dx ≤ CR

This shows that ̃u ∈ W
1,q
loc (RN) for all 1 < q < ∞.

Case (iii): 1/2 < s < 1. For x / ∈ �, we have from (2.7) that

|∇u1(x)|
N + 2s

≤ C1 + C2

ˆ

� 

1 
|x − y|N+2s−1 dy

ˆ

� 

1 
|x − y|N+2s+1 dy

(F (x))2

Now, since � ⊂ RN \ Bδ(x)(x) for all x ∈ �c, we compute for s > 1/2,

ˆ

� 

1 
|x − y|N+2s−1 dy ≤

ˆ

Rn\Bd(x)

1 
|z|N+2s−1 dz = C

∞ ˆ

d(x)

ρ−2s dρ = Cδ(x)1−2s .

This combined with (2.9) and (2.10) yield

|∇u1(x)|
N + 2s

≤ C1 + C4.

Hence, for all x ∈ RN \ � we have
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|∇u1(x)| ≤ C. �
Lemma 2.5. The following results hold:

1. Suppose 
N − 1

2N
< s < 1/2 and N < p <

1 
1 − 2s

. Then, the mapping u 
→ (−�)sũ is con

tinuous and compact from W 2,p(�) to Lp(�).

2. Suppose p > N and 1/2 ≤ s <
1

2
+ 1 

2p
. The mapping u 
→ (−�)sũ is continuous and 

compact from W 2,p(�) to Lp(�).

Proof. 1. For the convenience of the reader we show the continuity and the compactness in 
separate steps. Let u ∈ W 2,p(�) with ‖u‖W 2,p(�) ≤ 1 and let x ∈ � and then note we have

(−�)sũ(x) = I + II + III

where

I (u)(x) =
ˆ

{y∈�:|y−x|≤1}

ũ(x) − ũ(y)

|x − y|N+2s
dy,

II (u)(x) =
ˆ

{y∈RN\�:|y−x|≤1}

ũ(x) − ũ(y)

|x − y|N+2s
dy,

and III (u)(x) =
ˆ

{y:|y−x|≥1}

ũ(x) − ũ(y)

|x − y|N+2s
dy.

Note that

|I (u)(x)| ≤
ˆ

{y / ∈�:|y−x|≤1}

C|x − y| 
|x − y|N+2s

dy ≤ C2,

since s <
1

2
. Also, note that

|III (u)(x)| ≤
ˆ

{y:|y−x|≥1}

C

|x − y|N+2s
dy,

since ̃u is bounded on RN and hence |III (u)(x)| is bounded in � by some C. We now estimate 
II (u). Using z = y − x we have

|II (u)(x)| ≤
ˆ

|z|≤1

|̃u(x + z) − ũ(x)|
|z|N+2s

dz.

Note that
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|̃u(x + z) − ũ(x)| ≤ |z|
1 ˆ

0 

|∇ũ(x + tz)|dt.

Hence, we have

ˆ

� 

|II (u)(x)|pdx

≤
ˆ

� 

⎛⎜⎝ ˆ

|z|≤1

1 
|z|N+2s−1

1 ˆ

0 

|∇ũ(x + tz)|dtdz

⎞⎟⎠
p

dx

≤ C

ˆ

� 

ˆ

|z|≤1

1 
|z|N+2s−1

1 ˆ

0 

|∇ũ(x+tz)|pdtdzdx (Jensen’s inequality applied twice)

= C

1 ˆ

0 

ˆ

|z|≤1

1 
|z|N+2s−1

⎛⎝ˆ

� 

|∇ũ(x + tz)|pdx

⎞⎠dzdt

≤ C

1 ˆ

0 

ˆ

|z|≤1

1 
|z|N+2s−1

⎛⎜⎝ ˆ

|x|≤R

|∇ũ(x)|pdx

⎞⎟⎠dzdt,

for some large R and hence we have

ˆ

� 

|II (u)(x)|pdx ≤ C2

ˆ

|x|≤R

|∇ũ(x)|pdx.

Combining this with the results on I (u) and III (u), we see that (−�)sũ ∈ Lp(�) and is con
tinuous from W 2,p(�).

We now consider the compactness. Since W 2,p(�) is a rflexive space its sufficient to show 
that if um ⇀ 0 in W 2,p(�) then (−�)sũm → 0 in Lp(�). Let um ⇀ 0 in W 2,p(�) and hence it 
converges to zero in W 1,p(�) and uniformly in �.

(F (x))2∇ũm(x)

N + 2s
=
ˆ

� 

(um(y) − um(x̂))|x − y|−N−2sdy

ˆ

� 

|x − y|−N−2s−2(x − y)dy

+
ˆ

� 

|x − y|−N−2sdy

ˆ

� 

(um(x̂) − um(y))|x − y|−N−2s−2(x − y)dy.

From this we see that |∇ũm(x)| → 0 a.e. in RN and note that we can use the result of Lemma 2.4
with the dominated convergence theorem to see that ̃um → 0 in W 1,p(BR) for all 0 < R < ∞.
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Let x ∈ � and then note

(−�)sũm(x) = J1(um)(x) + III (um)(x)

where

J1(um)(x) = I (um)(x) + II (um)(x) =
ˆ

{y:|y−x|≤1}

ũm(x) − ũm(y)

|x − y|N+2s
dy.

As before, we can write this as

ˆ

� 

|J1(um)(x)|pdx

≤ C1

1 ˆ

0 

ˆ

{|z|≤1}

1 
|z|N+2s−1

⎛⎝ ˆ

x∈�

|∇ũm(x + tz)|pdx

⎞⎠dzdx

≤ C2

ˆ

|x|<R

|∇ũm(x)|pdx,

for some large R and we know this goes to zero from the earlier results.
Let R > 1 be big and note we have

|III (um)(x)|≤
ˆ

{y:1≤|y−x|≤R}

|̃um(x)| + |̃um(y)|
|x − y|N+2s

dy

+
ˆ

{y:|y−x|≥R}

|̃um(x)| + |̃um(y)|
|x − y|N+2s

dy

≤
ˆ

{y:1≤|y−x|≤R}

|̃um(x)| + |̃um(y)|
|x − y|N+2s

dy + CR−2s ,

where C is from the fact that |̃um(x)| ≤ C1 on RN (independent of m). From this we see that

ˆ

� 

|III (um)(x)|pdx ≤CpR−2sp + Cp

ˆ

� 

⎛⎜⎝ ˆ

1≤|y−x|≤R

|̃um(x)| + |̃um(y)|
|x − y|N+2s

dy

⎞⎟⎠
p

dx

≤CpR−2sp + Cp

ˆ

� 

⎛⎜⎝2 sup 
|ζ |≤R

|̃um(ζ )|
ˆ

|z|≥1

1 
|z|N+2s

dz

⎞⎟⎠
p

dx

and note that the second term goes to zero when m → ∞. Hence, we have
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lim sup
m 

ˆ

� 

|III (um)(x)|pdx ≤ CpR−2sp,

and consequently 
ˆ

� 

|III (um)(x)|pdx → 0 since we can set R → ∞. 

2. We now take 1/2 ≤ s < 1 and for these cases we split the integral in the definition of the 
fractional Laplacian as

(−�)sũ(x)= CN,s

2 

ˆ

RN

[̃u(x) − ũ(x + z)] + [̃u(x) − ũ(x − z)]
|z|N+2s

dz

= CN,s

2 

4 ∑
i=1 

ˆ

Ai
x

[̃u(x) − ũ(x + z)] + [̃u(x) − ũ(x − z)]
|z|N+2s

dz

+CN,s

2 

ˆ

{z∈RN :|z|>1}

[̃u(x) − ũ(x + z)] + [̃u(x) − ũ(x − z)]
|z|N+2s

dz,

where for i = 1, · · · ,4, the sets Ai
x are dfined as

A1
x = {z : |z| ≤ 1, x + z, x − z ∈ �},

A2
x = {z : |z| ≤ 1, x + z / ∈ �,x − z ∈ �},

A3
x = {z : |z| ≤ 1, x + z ∈ �,x − z / ∈ �},

A4
x = {z : |z| ≤ 1, x + z / ∈ �,x − z / ∈ �}.

We first estimate the following

ˆ

x∈�

⎛⎜⎝ ˆ

{z∈RN : |z|>1}

|̃u(x + z) + ũ(x − z) − 2ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dx.

First note that sup 
z∈RN

|̃u(z)| ≤ sup 
x∈�

|u(x)| and hence the above quantity is bounded,

ˆ

x∈�

⎛⎜⎝ ˆ

{z∈RN : |z|>1}

|̃u(x + z) + ũ(x − z) − 2ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dx ≤ C‖u‖p

W 2,p(�)
.

We now estimate the integrals over Ai
x for i = 1, · · · ,4.
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The A1
x term. Let 1/2 ≤ s < 1, u ∈ W 2,p(�) with ‖u‖W 2,p ≤ 1 and let v denote is W 2,p(�)

extension to all of RN which is compactly supported. Using a density argument we assume u
and v are smooth. We want to estimate

ˆ

x∈�

⎛⎜⎝ ˆ

z∈A1
x

|̃u(x + z) + ũ(x − z) − 2ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dx,

and note we can replace ̃u with u in A1
x and then we can replace u with v. We now estimate this 

quantity. First note that for |z| ≤ 1 we have

|v(x + z) − v(x) − ∇v(x) · z| ≤ |z|2
1 ˆ

0 

1 ˆ

0 

|D2v(x + tτz)|dτdt,

and from this we see that

|v(x + z) + v(x − z) − 2v(x)| ≤ |z|2
1 ˆ

0 

1 ˆ

0 

|D2v(x ± tτz)|dτdt,

where the ± indicates there are two terms we need to consider. Then we have

ˆ

x∈�

⎛⎜⎝ ˆ

z∈A1
x

|̃u(x + z) + ũ(x − z) − 2ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dx

is bounded above by

ˆ

x∈RN

⎛⎜⎝ ˆ

z∈A1
x

|z|−N−2s+2

⎛⎝ 1 ˆ

0 

1 ˆ

0 

|D2v(x ± tτz)|dτdt

⎞⎠dz

⎞⎟⎠
p

dx

and we can apply Jensen’s inequality twice to get this bounded above by

C1

ˆ

x∈RN

ˆ

z∈A1
x

|z|−N−2s+2

1 ˆ

0 

1 ˆ

0 

|D2v(x ± tτz)|pdτdtdzdx

and by Fubini we see this bounded above by

C

1 ˆ 1 ˆ ˆ
|z|−N−2s+2

⎛⎜⎝ ˆ

N

|D2v(x ± tτz)|pdx

⎞⎟⎠dzdtdτ,
0 0 |z|≤1 R
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and the Extension Theorem (see [10, Theorem 1, Page 259]) we have the term in the brackets 
bounded by

ˆ

RN

|D2v(x)|pdx ≤ C‖u‖p

W 2,p(�)

and this gives us the desired bound, that is

ˆ

x∈�

⎛⎜⎝ ˆ

z∈A1
x

|̃u(x + z) + ũ(x − z) − 2ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dx ≤ C‖u‖p

W 2,p(�)
.

The Ai
x term for i = 2,3,4. Note that if z ∈ Ai

x for i = 2,3,4, we must have |z| > δ(x). In what 
follows we will estimate

ˆ

x∈�

⎛⎜⎝ ˆ

z∈Ai
x

|̃u(x + z) − ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dx.

The same argument can be used to also estimate

ˆ

x∈�

⎛⎜⎝ ˆ

z∈Ai
x

|̃u(x − z) − ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dx

since the only fact we will use will be that |z| > δ(x). So to estimate the full quantity we group 
the three terms into the following pairings

[̃u(x + z) − ũ(x)] + [̃u(x − z) − ũ(x)]
and then estimate

ˆ

x∈�

⎛⎜⎝ ˆ

z∈Ai
x

|̃u(x + z) + ũ(x − z) − 2ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dx for i = 2, · · · ,3.

We split the proof into two cases: s = 1

2
and s ∈ (1/2,1).

The case s = 1

2
. Let 2 ≤ i ≤ 4 and note that we have

ˆ

x∈�

⎛⎜⎝ ˆ

i

|̃u(x + z) − ũ(x)|
|z|N+1 dz

⎞⎟⎠
p

dx
z∈Ax
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≤
ˆ

x∈�

⎛⎜⎝ ˆ

z∈Ai
x

´ 1
0 |∇ũ(x + tz)dt

|z|N dz

⎞⎟⎠
p

dx

=
ˆ

x∈�

⎛⎜⎝ ˆ

z∈Ai
x

´ 1
0 |∇ũ(x + tz)dt

|z|N−α|z|α dz

⎞⎟⎠
p

dx for some α > 0 small, picked later

≤
ˆ

x∈�

1 
(δ(x))αp

⎛⎜⎝ ˆ

z∈Ai
x

´ 1
0 |∇ũ(x + tz)dt

|z|N−α
dz

⎞⎟⎠
p

dx

≤ C

ˆ

x∈�

1 
(δ(x))αp

⎛⎜⎝ ˆ

z∈Ai
x

´ 1
0 |∇ũ(x + tz)|pdt

|z|N−α
dz

⎞⎟⎠dx (applying Jensen’s inequality twice)

≤ C

ˆ

x∈�

1 
(δ(x))αp

⎛⎜⎝ ˆ

δ(x)<|z|≤1

´ 1
0 |∇ũ(x + tz)|pdt

|z|N−α
dz

⎞⎟⎠dx

= C

1 ˆ

0 

ˆ

|z|≤1

1 
|z|N−α

⎛⎜⎝ ˆ

{x∈�:δ(x)≤|z|}

|∇ũ(x + tz)|p
(δ(x))αp

dx

⎞⎟⎠dzdt.

We now fix 0 < |z| ≤ 1 and 0 < t < 1 and note for 1 < q < ∞ we have

ˆ

{x∈�:δ(x)≤|z|}

|∇ũ(x + tz)|p
(δ(x))αp

dx ≤
⎛⎝ˆ

� 

|∇ũ(x + tz)|pqdx

⎞⎠
1 
q
⎛⎝ˆ

� 

1 
(δ(x))αpq ′ dx

⎞⎠
1 
q′

and so for fixed q we can take α > 0 small enough so that αpq ′ < 1 and the internal involving 
the distance function is bounded and the other integral is bounded (independent of z and t) after 
considering the earlier gradient bound on ̃u. This shows that

ˆ

x∈�

⎛⎜⎝ ˆ

z∈Ai
x

|̃u(x + z) − ũ(x)|
|z|N+1 dz

⎞⎟⎠
p

dx

is bounded.

The case s ∈ (1/2,1). Let 2 ≤ i ≤ 4 and u be as above. Recalling for z ∈ Ai
x we have |z| > δ(x)

we have
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ˆ

x∈�

⎛⎜⎝ ˆ

z∈Ai
x

|̃u(x + z) − ũ(x)|
|z|N+2s

dz

⎞⎟⎠
p

dz

≤
ˆ

� 

⎛⎜⎝ˆ

Ai
x

´ 1
0 |∇ũ(x + tz)|dt

|z|N+2s−1 dz

⎞⎟⎠
p

dx

=
ˆ

� 

⎛⎜⎝ˆ

Ai
x

´ 1
0 |∇ũ(x + tz)|dt

|z|N+2s−1−α|z|α dz

⎞⎟⎠
p

dx α > 0

≤
ˆ

� 

1 
(δ(x))αp

⎛⎜⎝ˆ

Ai
x

´ 1
0 |∇ũ(x + tz)|dt

|z|N+2s−1−α
dz

⎞⎟⎠
p

dx

≤ C

ˆ

� 

1 
(δ(x))αp

⎛⎜⎝ˆ

Ai
x

´ 1
0 |∇ũ(x + tz)|pdt

|z|N+2s−1−α
dz

⎞⎟⎠dx (Jensen’s inequality applied twice)

If we now assume that |∇ũ| ≤ C then we get this is bounded above by

C

ˆ

x∈�

1 
δ(x)αp

⎛⎜⎝ ˆ

z∈Ai
x

1 
|z|N+2s−1−α

dz

⎞⎟⎠dx,

and since Ai
x ⊂ {z : |z| ≤ 1, |z| > δ(x)} then to have this bounded its sufficient that αp < 1 and 

2s − 1 − α < 0. Hence we see its sufficient that 2s − 1 <
1 
p

. The compactness proof follows the 

same ideas as the previous range of s. �
The following result is a maximum principle that we will use in the proof of existence of a 

solution.

Theorem 2.6. Let � ⊂ RN be an open bounded set, q and a be uniformly Hölder continuous 
with a(x) ≥ 0 in �. Suppose u ∈ W 2,p(�) is a solution of

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Lu = 0 in �,

∂u

∂ν
= 0 on ∂�,

Nsu = 0 on RN \ �.

(2.12)

Then, ̃u ≡ 0 in RN .
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Proof. Let u denote the solution and, for notation, we also let u denote ̃u outside of �. Suppose 
x0 ∈ � such that u(x0) = inf

� 
u. We first rule out x0 ∈ ∂�. If x0 ∈ ∂�, then we take xm / ∈ � such 

that xm → x0 as m → +∞. Using the nonlocal boundary condition we get

0 =
ˆ

� 

u(y) − u(xm)

|y − xm|N+2s
dy.

Passing to the limit, we see that

0 =
ˆ

� 

u(y) − u(x0)

|y − x0|N+2s
dy,

which shows that u = C = const . is constant in � and hence constant in RN . Then note from the 
equation we have a(x)C = 0 in � and this shows that u = C = 0 provided a(x) is not identically 
zero which we have assumed and hence we are done.

We now suppose x0 ∈ � is such that u(x0) = inf
� 

u and we suppose u(x0) < 0.

We can also suppose that u(x0) < inf
∂� 

u. Note that, from the definition of u1, we get u(x) >

u(x0) for all x ∈RN \ �.
Fix σ > 0 such that u(x0) + 10σ < min

∂� 
u and we also assume u(x0) + 10σ < 0. For ε > 0

small set �ε = {x ∈ � : δ(x) > ε} and �ε = {x ∈ � : δ(x) < ε}. By continuity there is some 
ε0 > 0 such that

u(x0) + 8σ < inf 
�ε0

u.

For x / ∈ � we have

u(x)

ˆ

� 

1 
|x − y|N+2s

dy =
ˆ

�ε0

u(y) 
|x − y|N+2s

dy +
ˆ

�\�ε0

u(y) 
|x − y|N+2s

dy

≥ (u(x0) + 8σ)

ˆ

�ε0

1 
|x − y|N+2s

dy + u(x0)

ˆ

�\�ε0

1 
|x − y|N+2s

dy

= u(x0)

ˆ

� 

1 
|x − y|N+2s

dy + 8σ

ˆ

�ε0

1 
|x − y|N+2s

dy

which gives

u(x) ≥ u(x0) +
8σ

´
�ε0

1 
|x−y|N+2s dy´

�
1 

|x−y|N+2s dy
.

From this we can show there is some cε0 > 0 (without loss of generality we can take cε0 < 1) 
such that u(x) ≥ u(x0) + 8σcε for all x / ∈ �.
0
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Let η denote a standard radial mollfier with ηε the appropriately scaled function whose sup
port is Bε and set uε(x) = (ηε ∗ u)(x) for x ∈RN . For all 0 < ε < ε0 we have

inf 
∂� ε

2

u
ε
2 ≥ inf

�ε

u,

and also we have inf
�τ

uτ → u(x0) as τ → 0. From this we see there is some 0 < ε1 < ε0 such that 

for all 0 < ε < ε1 we have

inf 
� ε

2

u
ε
2 + 6σ ≤ u(x0) + 8σ < inf 

�ε0

u,

but by the monotonicity of ε 
→ inf
�ε

u we have

inf 
� ε

2

u
ε
2 + 6σ < inf 

�ε0

u ≤ inf
�ε

u

for all 0 < ε < ε1 and hence we have

inf 
� ε

2

u
ε
2 + 6σ < inf 

∂� ε
2

u
ε
2 ,

for 0 < ε < ε1 and hence the minimum is contained in the interior of �ε
2
. We now want to show 

that min
� ε

2

u
ε
2 ≤ u

ε
2 (x) for all x ∈ RN . Let 0 < ε <

ε1

10
with:

u
ε
2 (x0) < u(x0) + 8σcε0 . (2.13)

We consider the three cases: 

(i) x ∈ � with δ(x) <
ε

2
, (ii) x / ∈ � with δ(x) <

ε

2
and (iii) x / ∈ � with δ(x) >

ε

2
.

Case (i). Here, we have x ∈ � with δ(x) <
ε

2
. So in this case we have

u
ε
2 (x) =

ˆ

|y−x|< ε
2

η ε
2
(y − x)u(y)dy,

and note the integral can be decomposed as

ˆ

|y−x|< ε
2 ,y∈�

η ε
2
(y − x)u(y)dy +

ˆ

|y−x|< ε
2 ,y / ∈�

η ε
2
(y − x)u(y)dy

and from this we see that
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u
ε
2 (x) ≥ (u(x0) + 8σcε0)

ˆ

|y−x|< ε
2

η ε
2
(y − x)dy

= u(x0) + 8σcε0

> u
ε
2 (x0)

≥ inf 
� ε

2

u
ε
2 .

Case (ii). We have

(ũ)
ε
2 (x) =

ˆ

|y−x|< ε
2 ,y∈�

η ε
2
(y − x)ũ(y)dy +

ˆ

|y−x|< ε
2 ,y / ∈�

η ε
2
(y − x)ũ(y)dy

≥ inf
� ε

2

u

ˆ

|y−x|< ε
2 ,y∈�

η ε
2
(y − x)dy + (u(x0) + 8σcε0)

ˆ

|y−x|< ε
2 ,y / ∈�

η ε
2
(y − x)dy

≥
(

inf 
� ε

2

u
ε
2 + 6σ

) ˆ

|y−x|< ε
2 ,y∈�

η ε
2
(y − x)dy + (u(x0) + 8σcε0)

ˆ

|y−x|< ε
2 ,y / ∈�

η ε
2
(y − x)dy

≥
(

inf 
� ε

2

u
ε
2 + 6σ

) ˆ

|y−x|< ε
2 ,y∈�

η ε
2
(y − x)dy + u

ε
2 (x0)

ˆ

|y−x|< ε
2 ,y / ∈�

η ε
2
(y − x)dy

≥ inf 
� ε

2

u
ε
2

because u
ε
2 (x0) ≥ inf 

� ε
2

u
ε
2 and 

ˆ

|y−x|< ε
2

η ε
2
(y − x)dy = 1.

Case (iii). This follows similarly.
From the above we have, for small enough ε, that u

ε
2 (x ε

2
) = min

� ε
2

u
ε
2 (some x ε

2
∈ �ε

2
) and 

u
ε
2 (x ε

2
) + 6σ < inf 

∂� ε
2

u
ε
2 . Also note we have (take τ = ε/2) L(uτ )(x) = 0 in �τ and at xτ we 

have

−�uτ (xτ ) + (−�)suτ (xτ ) + q(xτ ) · ∇uτ (xτ ) = −a(xτ )u
τ (xτ ) ≥ 0. (2.14)

But −�uτ (xτ ) ≤ 0, ∇uτ (xτ ) = 0 and note that

(−�)su
ε
2 (x ε

2
) =

ˆ

N

u
ε
2 (x ε

2
) − u

ε
2 (y)

|x ε
2
− y|N+2s

dy,
y∈R
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and note y 
→ u
ε
2 (x ε

2
) − u

ε
2 (y) is continuous in y on RN , nonpositive and not identically zero. 

From this we see that (−�)su
ε
2 (x ε

2
) < 0 and this contradicts (2.14). The proof of Theorem 2.6

is completed. �
3. Proof of existence of a solution

This section is dedicated to the proof of Theorem 1.1. We apply the method of continuity 
under the Neumann boundary condition.

Proof of Theorem 1.1. For u ∈ W 2,p(�) and γ ∈R, we dfine

Lγ u(x) = −�u + γ (−�)sũ(x) + a(x)u(x) + q · ∇u(x), x ∈ �

and we consider the family of indexed problems⎧⎨⎩
Lγ u = f in �

∂u

∂ν
= 0 on ∂�.

(3.1)

Let A be the set

A :=
{

γ ∈ [0,1] : ∃Cγ > 0 such that for all f ∈ Lp(�), (3.1) has a solution 

u ∈ W 2,p(�) such that ‖u‖W 2,p(�) ≤ Cγ ‖f ‖Lp(�)

}
. (3.2)

In (3.2), we take the constant Cγ to be the smallest constant such that ‖u‖W 2,p(�) ≤ Cγ ‖f ‖Lp(�)

holds for all functions f ∈ Lp(�). In other words, if Cγ > ε > 0 then there exists fε ∈ C0,α(�)

such that

‖u‖W 2,p(�) ≥ (Cγ − ε)‖fε‖Lp(�). (3.3)

By classical theory, 0 ∈A (see [11, section 2.4]). Our goal is to show that A is both open and 
closed and since [0,1] is connected we then see that A ∈ {∅, [0,1]}, and since its non empty, we 
must have A= [0,1]. In particular 1 ∈A which corresponds to the result we are trying to prove.

A is closed. Let γm ∈ A with γm → γ and let Cm = Cγm denote constant associated with Cm. 
We first consider the case where {Cm} is bounded. Let f ∈ Lp(�) with ‖f ‖Lp = 1. Since γm ∈
A there is some um ∈ W 2,p(�) which satifies (3.1), with γm in place of γ , and ‖um‖W 2,p ≤
Cm‖f ‖Lp = Cm. Note we can rewrite the problem as

−�um + aum + q · ∇um = f − γm(−�)sũm in �, (3.4)

with ∂νum = 0 on ∂�. Since {Cm} is bounded then we have {um} bounded in W 2,p(�)

and by passing to a subsequence we can assume that um ⇀ u in W 2,p(�) and ‖u‖W 2,p ≤
lim inf

m 
‖um‖W 2,p ≤ C1. Also note by our earlier compactness result we have (−�)sũm →

(−�)sũ in Lp(�) and this (along with the above weak W 2,p convergence) is sufficient con
vergence to pass to the limit in (3.4). This shows that γ ∈A.
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We now consider the case of Cm → ∞. Then, there is some fm ∈ Lp(�) and um ∈ W 2,p(�)

which solves Lγmum = fm in � with ∂νum = 0 on ∂� and

‖um‖W 2,p ≥ (Cm − 1)‖fm‖Lp .

By normalizing we can assume ‖um‖W 2,p(�) = 1 and hence ‖fm‖Lp → 0. By passing to subse

quences we can assume that um ⇀ u in W 2,p(�) and strongly in W 1,p(�). As before we rewrite 
the equation for um by

−�um + aum + q · ∇um = fm − γm(−�)sũm in �, (3.5)

with ∂νum = 0 on ∂�. If u = 0 then note the right hand side of (3.5) converges to zero in Lp(�)

and by standard elliptic theory we have um → 0 in W 2,p(�) which contradicts the normalization 
of um. We now assume u �= 0. By compactness we can pass to the limit in (3.5) to see that 
u ∈ W 2,p(�)\{0} satifies Lγ u = 0 in � with ∂νu = 0 on ∂� which contradicts Theorem 2.6.

A is open. Let γ0 ∈ A and take |ε| small; when γ0 ∈ {0,1} we need to restrict the sign of ε. Our 
goal is to show that γ = γ0 + ε ∈ A. Fix f ∈ Lp(�) with ‖f ‖Lp = 1 and since γ0 ∈ A there is 
some v0 ∈ W 2,p(�) which solves Lγ0v0 = f in � with ∂νv0 = 0 on ∂�. We look for a solution 
of (3.1) of the form u = v0 + φ. Writing out the details one sees we need φ ∈ W 2,p(�) to satisfy

Lγ0φ = −ε(−�)sṽ0 − ε(−�)sφ̃ in �, (3.6)

with ∂νφ = 0 on ∂�. Dfine the operator Jε(φ) = ψ where ψ satifies

Lγ0ψ = −ε(−�)sṽ0 − ε(−�)sφ̃ in �, (3.7)

with ∂νψ = 0 on ∂�. We claim that for small enough ε that Jε is a contraction mapping on 
W 2,p(�) and hence by the Contraction Mapping Principle there is some φ ∈ W 2,p(�) with 
Jε(φ) = φ. From (3.6) one would then get a W 2,p(�) bound on φ and hence we’d get the desired 
bound on u. We first note that Jε is into W 2,p(�) after noting the right hand side of (3.6) belongs 
to Lp(�). Let φi ∈ W 2,p(�) and ψi = Jε(φi) and then note we have

Lγ0(ψ2 − ψ1) = −ε(−�)s(φ̃2 − φ̃1) in �,

with the desired boundary condition. Then we have

‖ψ2 − ψ1‖W 2,p ≤ Cγ0 |ε|‖(−�)s(φ̃2 − φ̃1)‖Lp ≤ Cγ0 |ε|C‖φ2 − φ1‖W 2,p ,

and hence we see of |ε| small that Jε is a contraction on W 2,p(�) and this completes the proof 
of Theorem 1.1. �
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