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Abstract

We study, in dimensions N ≥ 3, the family of first integrals of an incompressible
flow: these are H1

loc functions whose level surfaces are tangential to the streamlines
of the advective incompressible field. One main motivation for this study comes
from earlier results proving that the existence of nontrivial first integrals of an
incompressible flow q is the main key that leads to a “linear speed up” by a large
advection of pulsating traveling fronts solving a reaction–advection–diffusion equa-
tion in a periodic heterogeneous framework. The family of first integrals is not well
understood in dimensions N ≥ 3 due to the randomness of the trajectories of q and
this is in contrast with the case N = 2. By looking at the domain of propagation
as a union of different components produced by the advective field, we provide
more information about first integrals and we give a class of incompressible flows
which exhibit “ergodic components” of positive Lebesgue measure (and hence are
not shear flows) and which, under certain sharp geometric conditions, speed up the
KPP fronts linearly with respect to the large amplitude. In the proofs, we establish
a link between incompressibility, ergodicity, first integrals and the dimension to
give a sharp condition about the asymptotic behavior of the minimal KPP speed in
terms of the configuration of ergodic components.

1. Introduction

The main objective of this paper is to understand the influence of a strong incom-
pressible flow on KPP reaction–diffusion in the case where the spatial dimension
is N ≥ 3. Consider a reaction–advection–diffusion equation of the form
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ut = ∇ · (A(z)∇u)+ Mq(z) · ∇u + f (z, u), t ∈ R, z ∈ �,

with boundary conditions ν · A∇u = 0 on R × ∂� when ∂� �= ∅, with “stan-
dard” assumptions on the unbounded, periodic domain � ⊆ R

N and the diffusion
A = A(z), (see Section 1.1 for precise assumptions) and a “KPP type” nonlinearity
(a classical example is f (u) = u(1 − u) for u ∈ [0, 1]). This models population
dynamics in a heterogeneous framework, where u stands for the density of a certain
population at time t and position z. The question about the influence of advection,
stirring, for instance, on this population dynamics is natural and has been under
investigation in many works in mathematics and physics which we will discuss
in detail in Section 1.3. The answer to these kinds of questions in higher dimen-
sions (N ≥ 3) is important because there are interesting phenomena which can be
described by such reaction–advection–diffusion models in the case N = 3, par-
ticularly. In the case N = 2, the streamlines of the incompressible flow have less
freedom and this makes it relatively simpler to give a sharp criterion classifying
the flows according to the rate of “speeding-up” the propagation phenomenon of
“traveling fronts” induced by reaction–diffusion models.

Before discussing the heterogeneous setting, which involves a strong incom-
pressible flow, let us first recall the notion of traveling fronts in homogeneous media
and review some of their important features in the case of the so called “KPP” non-
linearity. Traveling fronts appeared in the pioneering work [15] of Kolomogrov,
Petrovsky and Piskunov which addressed a homogeneous reaction–diffusion equa-
tion satisfied by a scalar quantity u = u(t, x)

ut = �u + f (u) for all (t, x) ∈ R × R
N , (1)

where the Lipschitz nonlinearity f (often called “KPP nonlinearity” in the literature,
due to the authors of [15]) satisfies

f (0) = f (1) = 0, f ′(0) > 0, f > 0 in (0, 1),
0 < f (s) ≤ f ′(0)s for all s ∈ (0, 1).

(2)

Given a unitary direction e ∈ R
N , a traveling front in the direction of e is a time-

global solution to (1) of the form u(t, x) = φ(x ·e−ct)where the profile φ satisfies
the boundary conditions φ(−∞) = 1 and φ(+∞) = 0. The real number c is called
the speed of the front. It is well known that Equation (1) with a nonlinearity of type
(2) admits traveling front solutions (c, u), connecting the stationary states 1 and
0 (the trivial solutions of (1)) if and only if c ≥ c∗(e). The threshold c∗ = c∗(e)
is called the KPP minimal speed. In this simple homogeneous setting where the
coefficients of the equation are independent of time and space variables and the
domain is the whole space R

N without perforations, the value of c∗ is given by
2
√

f ′(0) and it does not depend on the direction of propagation e (see [2] and the
references therein).

The interest in studying traveling front solutions and their speeds of propagation
increased in the 1970s due to their appearance in interface dynamics in many
phenomena in chemistry and biology as well as combustion theory. For instance,
in the works, Aronson and Weinberger [1,2] proved the existence of traveling
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wave solutions for homogeneous reaction–diffusion equations which were proved
to model population genetics, combustion, and nerve pulse propagation.

We want to emphasize that the minimal speed in the KPP case is the one of
special interest among all the speeds lying in the spectrum [c∗(e),+∞). This
comes from the results of [2,5,22] which proved that, in certain situations, the KPP
minimal speed c∗(e) is actually the speed of spreading of solutions of the Cauchy
problem (1) with general compactly supported initial data.

1.1. The Heterogeneous Framework

Unlike the homogeneous setting described above, the one we work with is more
complicated in the sense that the coefficients of the equation depend on the spatial
variables and there is a drift term in the equation as well. The model reflects more
of the reality when it takes into account the influence of the non-homogeneous
environment and medium on the propagation phenomena. The drift term is under-
stood in some scenarios as the representative of stirring and in this work the main
focus will be on large drifts. A rich series of works in the last two decades dis-
cussed reaction–advection–diffusion equations in a “heterogeneous” framework.
The minimal KPP speed still exists in those settings but it is described via elliptic
eigenvalue problems related to the linearized reaction–advection–diffusion equa-
tion near the stationary state 0. In this subsection, we describe the mathematical
framework which we consider for this paper and we recall some important known
results which are related to our analysis. The term “reaction–advection–diffusion”
equation stands for a model of the form

{
ut = ∇ · (A(z)∇u) + q(z) · ∇u + f (z, u), t ∈ R, z ∈ �,

ν · A∇u = 0 on R × ∂�,
(3)

where ν stands for the unit outward normal on ∂� whenever it is nonempty. In this
work, we are interested in the case of large advection. That is, a parametric equation
of type (3) where q · ∇u is replaced by Mq · ∇u and M is a large parameter:

{
ut = ∇ · (A(z)∇u) + Mq(z) · ∇u + f (z, u), t ∈ R, z ∈ �,

ν · A∇u = 0 on R × ∂�.
(4)

In general, the domain � is a C3 nonempty connected open subset of R
N such

that for some integer 1 ≤ d ≤ N , and for some L1, . . . , Ld positive real numbers,
we have

⎧
⎪⎨

⎪⎩

∃ R ≥ 0 ; ∀ (x, y) ∈ � ⊆ R
d × R

N−d , |y| ≤ R,

∀ (k1, . . . , kd) ∈ L1Z × · · · × LdZ, � = �+
d∑

k=1

ki ei ,
(5)

where {e1, . . . , eN } stands for the standard basis of R
N and d ∈ {1, . . . , N }. In

other words, the domain � is Li periodic in the i th direction (1 ≤ i ≤ d) and one
can write � + Li ei = � for all 1 ≤ i ≤ d. We also assume, when d < N , that
� is bounded in the directions ei for i > d. We notice that in the case d = N , the
domain � is unbounded and periodic in all directions. We denote the periodicity
cell of � by
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C = {z = (x1, . . . , xd , y) ∈ � such that xi ∈ [0, Li ] for all 1 ≤ i ≤ d}. (6)

Definition 1. (L-periodic fields) On a domain � which satisfies the periodicity
described in (5), we say that a function g : � → R

m (m = 1, 2, . . .) is L-periodic
if g(x + k) = g(x) for all x ∈ � and for all k ∈ L1Z × · · · × LdZ × {0}N−d .

The presence of the term Mq · ∇u in Equation (4), where M is seen as a large
parameter, will be the main focus of our analysis. In any dimension N , the advective
field q = q(x, y) = (q1, . . . , qN ) is a C1,δ(�) (with δ > 0) vector field satisfying

⎧
⎨

⎩

q = q(x, y) is L-periodic in x,
∇ · q = 0 in �,
q · ν = 0 on ∂� (when ∂� �= ∅),

(7)

together with the normalization condition

∀ 1 ≤ i ≤ d,
∫

C
qi dx = 0. (8)

Remark 1. The assumption (8) on the vector field q states that only the first d
components are of zero average over the periodicity cell C . The condition appeared
in this form in [4,5] and many other works. In fact, we will prove in Proposition 1
that, due to the incompressibility of q, this assumption is equivalent to having all
components of q of zero average. That is,

∀ 1 ≤ i ≤ N ,
∫

C
qi dx = 0. (9)

1.2. A Brief Review of Relevant Results

We recall here the definition of pulsating traveling fronts and summarize the
known results, which are related to our current work, regarding the existence of
these fronts and their speeds in the KPP heterogeneous and periodic setting. We
fix a unit direction e ∈ R

d , |e| = 1, and let ẽ := (e, 0, . . . , 0) ∈ R
N . A pulsating

traveling front in the direction of e, with a speed c, is a classical time-global solution
u = u(t, x, y) of (3) which has the form u(t, x, y) = φ(x · e − ct, x, y) for all
(x, y) ∈ �, such that the “profile” φ is L-periodic in x and connects the two
stationary states of (3) as follows

lim
s→−∞φ(s, x, y) = 1 and lim

s→+∞φ(s, x, y) = 0 uniformly in (x, y) ∈ �.
The limiting condition and the periodicity in x of the profile φ actually comes from
the traveling front Ansatz: a solution u to (3) which satisfies

⎧
⎪⎪⎨

⎪⎪⎩

u

(
t − k · e

c
, x, y

)
= u(t, x + k, y),

lim
x ·e→−∞ u(t, x, y) = 1 and lim

x ·e→ +∞ u(t, x, y) = 0,

0 ≤ u ≤ 1,

(10)

where the above limits hold locally in t and uniformly in y and in the directions of
R

d which are orthogonal to e.
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Concerning the nonlinearity f in Equation (3), our results will hold in the
case of generalized heterogeneous KPP type nonlinearity (not only for those of
homogeneous type (2)). In order to announce our results in the most general setting,
we present these assumptions here. The reaction term in (3) is a nonnegative function
f = f (x, y, u) defined in � × [0, 1] such that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

f ≥ 0, f is L-periodic with respect to x, and of class C1,δ(�× [0, 1]),
∀ (x, y) ∈ �, f (x, y, 0) = f (x, y, 1) = 0,
∃ ρ∈(0, 1), ∀(x, y)∈�, ∀ 1−ρ ≤ s ≤ s′ ≤ 1, f (x, y, s) ≥ f (x, y, s′),
∀ s ∈ (0, 1), ∃ (x, y) ∈ � such that f (x, y, s) > 0,

∀ (x, y) ∈ �, ζ(x, y) := fu(x, y, 0) = lim
u→ 0+

f (x, y, u)

u
> 0,

(11)

together with the “KPP” condition (named after Kolmogorov et al. [15])

∀ (x, y, s) ∈ �× (0, 1), 0 < f (x, y, s) ≤ fu(x, y, 0)× s. (12)

A typical example of f is (x, y, u) �→ u(1−u)h(x, y) defined on�×[0, 1] where
h is a positive C1,δ(� ) L-periodic function.
Our results apply in the case of a spatially dependent diffusion A(x, y) =
(Ai j (x, y))1≤i, j≤N which is symmetric, C2,δ(� ) (for some δ > 0) and satisfies
the classical assumptions

⎧
⎪⎪⎨

⎪⎪⎩

A is L-periodic with respect to x,
∃ 0 < α1 ≤ α2,∀(x, y) ∈ �,∀ ξ ∈ R

N ,

α1|ξ |2 ≤
∑

1≤i, j≤N

Ai j (x, y)ξiξ j ≤ α2|ξ |2. (13)

When A is the identity matrix, this boundary condition in (3) reduces to the usual
Neumann condition ∂νu = 0.

Let us recall the well known existence result of KPP pulsating traveling fronts
and the threshold c∗ which, from this point on, we denote by c∗

�,A,q, f (e) for the
minimal KPP speed of (3) in the heterogeneous setting.

Theorem A. (Berestycki et al. [5]) Let e be a fixed unit vector in R
d . Let ẽ =

(e, 0, . . . , 0) ∈ R
N . Assume that �, q, f and A satisfy (5), (7–8), (11–12) and

(13). The minimal speed c∗(e) := c∗
�,A,q, f (e) of pulsating fronts solving (3) and

propagating in the direction of e is given by

c∗(e) := c∗
�,A,q, f (e) = min

λ>0

k(λ)

λ
, (14)

where k(λ) = k�,e,A,q,ζ (λ) is the principal eigenvalue of the operator L�,e,A,q,ζ,λ
which is defined by

L�,e,A,q,ζ,λψ := ∇ · (A∇ψ) − 2λẽ · A∇ψ + q · ∇ψ
+[λ2ẽAẽ − λ∇ · (Aẽ)− λq · ẽ + ζ ]ψ (15)

acting on the set of functions

E ={ψ=ψ(x, y)∈C2(�),ψ is L-periodic in x, ν · A∇ψ=λ(ν · Aẽ)ψ on ∂�
}
.
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Notation 1. We will use the notation c∗
�,A,Mq, f (e) for the minimal KPP speed, in

the direction of e, of the parametric problem (4) with respect to the amplitude M
of the advection q.

1.3. The Question About the Influence of an Advective Term Mq · ∇u

Our main motivation for this work comes from the very rich mathematical
literature addressing the influence of a large incompressible flow on the propagation
of fronts. As we mentioned above, the minimal speed is of special interest among
the spectrum of speeds [c∗,∞) in the KPP case, due to its relation to spreading of
general compactly supported initial data for the Cauchy problem associated with
the reaction–diffusion equation.

The presence of a large advection in (4) is expected to speed-up the front propa-
gation. This has been widely considered as a subject of study in many mathematical
articles in the past 15 years. We first mention the case of a diffusive mixing (where
there is no reaction term),

uM
t (x, t)+ Mq · ∇uM (x, t)−�uM (x, t) = 0, uM (x, 0) = u0(x), (16)

studied by Constantin et al. [7], who gave sharp criteria on the incompressible
flow q to be “relaxation enhancing” (see the precise definition in [7]). Roughly
speaking, a relaxation enhancing flow is the one that makes the deviation of a
solution of (16) from its spatial average arbitrarily small in an arbitrarily short time
τ . The criteria given in [7] were in the same spirit as those in Berestycki et al. [4]
which, however, were applied to study the speed up, by large advection, of KPP
traveling fronts in the reaction–advection–diffusion setting. There are important
alternative ways (not via first integrals or existence of nontrivial eigenfunctions)
to characterize mixing and the associated control problem which were derived by
Thiffeault and Doering [21] and Lin et al. [16]. We also mention here one
of the earlier PDE works on propagation of fronts in an incompressible flow, by
Majda and Souganidis [18], in which the authors were able to write down and
rigorously justify the appropriate renormalized effective large scale front equations
for premixed turbulent combustion with two-scale incompressible velocity fields
within the thermal-diffusive approximation without any ad hoc approximations.

In our work, we deal with a large flow in the presence of diffusion and reaction.
In what follows, we will talk about the results which concern the asymptotic behav-
ior of the, now parametric, KPP minimal speed c∗

�,A,Mq, f (e) when the amplitude
M of the advection q is large.

Berestycki [3] and Heinze [11] considered a particular class of incompress-
ible flows, namely shear-flows, and proved that in any dimension N , they speed-up
the propagation linearly. That is, c∗

�,A,Mq, f (e)/M → l > 0, as M → +∞, pro-
vided that q is a shear flow (that is q(x1, . . . , xN ) = (α(x2, . . . , xN ), 0 . . . , 0) over
R

N and e = (1, 0, . . . , 0)). Later on, Berestycki et al. [4] gave upper and lower

bounds, which do not depend on the amplitude M , of the quantity
c∗
�,A,Mq, f (e)

M
in a more general periodic framework and in the presence of a more general class
of incompressible flows satisfying (7) and (9). This heterogeneous framework is
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the one we described above. The upper and lower bounds of [4] affirmed that the
minimal KPP speeds c∗

�,Mq, f (e) behave as O(M) when M is large; however, the
precise asymptotic behavior was not given in [4]. It became interesting to know
the precise limit and whether O(M) is the sharp asymptotic regime of the KPP
minimal speeds or not.

One answer to this question appeared in [19] by Novikov and Ryzhik who
proved that, in the case N = 2 and for the class of cellular incompressible flows, the
parametric minimal speed c∗

Mq, f (e) behaves as O(M1/4) when M → +∞. Later,
the question “what are all the flows which produce the sharp regime O(M)?” was
fully answered in the 2 dimensional case by our results in [10]. We proved that, in

a general periodic framework where N = 2, lim
M→+∞

c∗
�,Mq, f (e)

M
is positive (hence

O(M) is the sharp regime) if and only if the advection field q admits a periodic
unbounded streamline. Shear flows are a particular example of these fields. To sum-
marize, in the case N = 2, our results in [10] give the sharp criterion for the linear
speed up and the results of Novikov and Ryzhik [19] give a sharp regime (M1/4) for
the family of cellular flows which do not have unbounded periodic streamlines. It is
important to mention here that [4,8–11,14,20,23] and many other works related to
the influence of large advection on KPP fronts relied on the variational formula (14)
of KPP speed of propagation—which was proved by Berestycki et al. in [5] and by
Weinberger [22]. The work of Constantin et al. [6] gave several lower and upper
bounds for the speeds of traveling fronts in the case of a combustion-nonlinearity or
general positive nonlinearities. In the case of coupled reaction–advection–diffusion
systems, Kiselev and Ryzhik [14] gives interesting lower bounds of the paramet-
ric speeds, with respect to the amplitude of the advection, and proves that shear
flows speed up the propagation in a higher rate than cellular flows.

We turn now to the precise limit as M → +∞ in any dimension which was
derived in Zlatoš [23] and in our work [10] (we recall this result in Theoem
B below). The speed up limits of KPP fronts by large incompressible advective
fields involve a variational quantity where the functions called “first integrals of the
advection field” appear. These functions were used in our previous work [10] and
in Berestycki et al. [4] as well as many other works in the literature (see Heinze
[11], Ryzhik and Zlatoš [20] and Zlatoš [23]). The first integrals of q are defined
precisely in Definition 2 below.

Definition 2. (First integrals of an incompressible field [4,9,10]) The set of first
integrals of q is defined by

I := {w ∈ H1
loc(�), w is L-periodic in x and q · ∇w = 0 a.e. in �

}
. (17)

Fixing a uniformly elliptic matrix A = A(x, y) ∈ C2(�) satisfying (13), we define
the following subset which relates first integrals with the reaction and diffusion
terms of Equation (4).

I A
1 :=

{
w ∈ I, such that

∫

C
ζw2 ≥

∫

C
∇w · A∇w

}
, (18)

where ζ(x, y) = fu(x, y, 0) is the positive L-periodic in x function which we
introduced in (12).
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Theorem B. (El Smaily and Kirsch [10] and Zlatoš [23]) Let � ⊆ R
N =

R
d × R

N−d satisfy (5) and fix a unit direction e ∈ R
d . Assume that the diffusion

matrix A and the nonlinearity f satisfy (13), (11) and (12) and let q be an advection
field which satisfies (7) and (9). Then,

lim
M→+∞

c∗
�,A,M q, f (e)

M
= max
w ∈ I A

1

∫

C
(q · ẽ) w2

∫

C
w2

. (19)

We will work in dimensions N ≥ 3 and give a class of flows, which are not shear
flows, and which lead to a linear speed up of the KPP speed under certain conditions
which turn out to be necessary and sufficient. By “linear speed-up” we mean that
the limit (19) is strictly positive. The methods we use in this paper are different from
the ones used in any of the references we cite. We use a variety of tools from measure
and ergodic theory, functional analysis and PDEs. We will prove a sharp criterion
for linear speed-up for a particular type of flows (the ones which exhibit ergodic
components) in Theorem 3, for dimensions N ∈ {3, 4}, and in Theorem 4 when
N ≥ 5. Even though our results here are applicable for a particular type of flows,
it is worth mentioning that these results will be very useful to answer the question
of linear speed-up for any kind of incompressible flows in dimensions N ≥ 3. The
randomness of the geometry of the streamlines of the flow q in dimensions N ≥ 3
is the main reason behind the difficulty in constructing first integrals w which lead
to positivity of the limit (19). Given any incompressible flow q, one can overcome
this difficulty (randomness of the geometry of streamlines), an efficient tool would
be decomposing the domain of propagation� into different components produced
by q: ergodic components, periodic flow tubes, singular streamlines, and bounded
components. In doing such a partition of the domain �, one can then study the
nature of

∫
q · ẽ dx over each of these components in order to conclude whether q

speeds-up the KPP fronts linearly or not. Our present work deals with the “ergodic
components” which are indeed the parts of the domain where the streamlines of
q behave randomly. The question about the linear speed-up of KPP fronts for any
type of incompressible flow is currently under investigation by the authors and will
be the subject of a forthcoming paper.

Remark 2. We see from the above definition that if w ∈ I, then w + λ ∈ I for
any constant λ ∈ R. This yields that for any w ∈ I, there exists a sufficiently large
constant K := K (w,C) so that w + K belongs to I A

1 . This simple observation
will be useful for us while seeking a first integral of q which gives a positive limit
in (19). We can now see that this limit, which is given as a maximum over I A

1 ,
will be positive as long as one can find w0 ∈ I (not necessarily I A

1 ) such that∫
C q · ẽw2

0 > 0.

We will make use of the correspondence between the advection field q and its
“flow” in several proofs and statements. We recall this well known correspondence
in the following.

Definition 3. (Associated flow and stability of a set) Given a vector field q : � →
R

N (in this present work, q ∈ C1,δ(�) and it is periodic with respect to x), the
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flow associated to q or simply the flow of q, is the one-parameter family of diffeo-
morphisms � := {�s}s∈R generated by q where � : R ×� → R

N is the unique
solution of

{ d

ds
�(s, x) = q(�(s, x)),

�(0, x) = �0(x) = x .
(20)

It is common to associate to � the one parameter family {�s}s∈R where for each
s ∈ R, �s : � → R

N is the map defined as �s(x) := �(s, x) for all x ∈ �. We
recall here that for all t, s ∈ R, �s ◦�t = �t+s and �0 = I d.
In this context, a set A ⊆ � is said to be stable by the flow of q if �t (A) ⊆ A for
all t ∈ R.

Definition 4. (Streamlines or particle trajectories) Let x ∈ �, and φx : R → R
N

be the solution of the following nonlinear ODE
{
φ′

x (t) = q(φx (t)),
φx (0) = x .

The streamline of q through the point x ∈ �, denoted by Tx , is the set

Tx = {φx (t), t ∈ R}. (21)

Remark 3. The streamlines of q define a partition on the set �. Notice that

x ∈ � and Tx = {x} if and only if q(x) = 0.

2. Main Results: First Integrals on Ergodic Components and Speed-Up of
KPP Fronts (N ≥ 3)

In our analysis of variational quantities of the type (19), which involve first inte-
grals of the incompressible field q, it turns out that “ergodicity” plays an important
role in the cases N ≥ 3. A simple way to understand this is by noticing that the
condition q · ∇w = 0, when N = 3, means that the streamlines of q are tangent
to the regular level surfaces of w. Having N ≥ 3 allows incompressible flows to
have more degrees of freedom and this leads to more randomness in the structure
of their streamlines which makes it complicated to study the level sets (surfaces)
which are tangential to these trajectories. We will give the precise definition of what
we call an ergodic component of an incompressible vector field and then we prove,
in Theorem 1, that over these components the first integrals of q must be constant.
We then apply this result to conclude about the variational quantity (19) in the case
where q admits ergodic components.
Throughout this paper, we denote the Lebesgue measure on R

N by LN .

Definition 5. (Ergodic components of a vector field, N ≥ 3) Assume N ≥ 3. A
set V ⊆ � is called an ergodic component of the vector field q if V is Lebesgue
measurable with LN (V ) > 0, V is stable by the flow of q and it satisfies

(W ⊂ V and W stable by the flow of q) ⇒ (LN (W ) = 0 or LN (V \W ) = 0).
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In other words, an ergodic component in � produced by the advection q is, in a
sense, minimal, up to a set of measure zero, in the family of sets which are stable
by the flow associated to q.
It is important to know that, in the case N = 2, such ergodic components do not exist
for incompressible flows satisfying (7) and (9). This will be proved in Appendix 3
at the end of this paper.
We can now state the following theorem about first integrals. The proofs of Lemma
1 and Theorems 1, 2, 3, 4 and 5 will be given in Section 3 below.

Theorem 1. Let � be an open subset of R
N satisfying (5) (or more generally an

N-dimensional manifold, like a flat torus). Let q ∈ C1,δ(�) be a divergence-free
vector field, and w be a first integral of q. Then, w is constant almost everywher
on any ergodic component of the flow.

The proof of Theorem 1 relies on the following lemma which holds in any dimension
N .

Lemma 1. Assume that � ⊆ R
N is an open connected domain which satisfies (5).

Let w be a first integral of q on � and I a measurable subset of R. Then, up to a
set of measure 0, w−1(I ) is stable by the flow of q. Furthermore,

∀t ∈ R, LN (�t (w
−1(I ))�(w−1(I ))) = 0,

where � stands for the symmetric difference and � is the flow associated to q.1

Remark 4. We emphasize here that the result of Lemma 1 is valid in any dimension
N—not only in dimensions smaller than or equal to 3. It is also worth mentioning
that assumptions (1) on the domain � are not all necessary for the result to hold
(it will be easy to see this throughout the proof of the lemma), but we use these
assumptions to guarantee the existence of traveling fronts which are our main
motivation for this study.

2.1. Impact of the Configuration of Ergodic Components on First Integrals

In Theorem 1, above, we established a link between ergodicity and first integrals.
The following theorem aims to show the influence of the dimension on the H1

regularity of a function which admits two different constant values over two balls
which are tangential to each other (in the next results, these functions will play
the role of first integrals to the flow). We will use the next theorem to study the
particular class of vector fields having ergodic components of positive Lebesgue
measure and investigate whether they can give a linear speed up of the KPP speed
c∗ or not.

Theorem 2. Let N ∈ N such that N ≥ 2, B1 the open ball in R
N of radius 1 and

center (0, . . . , 0, 1), B2 the open ball of radius 1 and center (0, . . . , 0,−1) and U
a bounded open subset of R

N containing the convex hull of B1 ∪ B2.

1 for any two sets A and B, A�B stands for the (A\B) ∪ (B\A) = (A ∪ B)\(A ∩ B).
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For a function u : U → R and for (λ, μ) ∈ R
2 be any couple, we say that u verifies

(Cλ,μ) if

(Cλ,μ) u|B1 = λ and u|B2 = μ.

Depending on the dimension N, we have the following

1. If N ≤ 3, and if u ∈ H1(U ) verifies (Cλ,μ), we must have λ = μ.
2. If N ≥ 4, then for any couple (λ, μ) ∈ R

2, there exists a function u ∈ H1(U )
verifying (Cλ,μ).

Remark 5. We can see now that the existence of nontrivial first integrals is partic-
ularly subtle in the case N = 3: first, we know that incompressible fields satisfying
(7–8) and having ergodic components (in the sense of Definition 5) exist in the case
N ≥ 3 but not in the case N = 2. On the other hand, Theorems 1 and 2 allow us to
see that the H1

loc-regularity of first integrals, for incompressible flows with ergodic
components, is strongly affected by the configuration of these components in the
case N ≤ 3. This will become more clear in the following results.

2.2. The KPP Speed in a Large Advective Field with Ergodic Components
(N ≥ 3)

We will apply the results of Theorems 1 and 2 to give a class of incompressible
flows, other than shear flows, which make the limit (19) strictly positive in the
case where the dimension is N = 3 or higher. Our result in [10] and the results
of Novikov and Ryzhik [19] show that an efficient way to study the influence
of a large incompressible flow on the reactive-diffusive front is by looking at the
components produced by this flow inside the domain of propagation. This simple
observation led, in the 2 dimensional case, to the sharp criterion which roughly
states: when N = 2, the limit (19) is positive (that is the advection speeds up the
KPP fronts linearly) if and only if it admits an unbounded periodic streamline (see
[10] for the proof).

We defined ergodic components produced by an incompressible flow in Defini-
tion 5 above. We sketch here the strategy which we will use to handle the variational
quantity (19) in the cases N ≥ 3. For simplicity, suppose that � = R

N and that
we have a smooth incompressible flow v over � (for the existence of such v, see
below) such that:

(A1) v = v(x1, . . . , xN ) = (v1, . . . , vN ) is periodic in x1, . . . , xN .
(A2) v admits an ergodic component V1 = R × D1 ⊂ R

N (D1 is a ball in R
N−1)

which is a cylinder in the direction e = (1, 0, . . . , 0).
(A3) v ≡ 0 on (R × ∂D1) ∪ (RN \V1) = ∂V1 ∪ (RN \V1) = V c

1 ,

then the set of first integrals I of v contains only the H1
loc functions which are

almost everywhere constant over the component V1. Theorems 1 and 2 will then
be useful to give the answer to the question about the positivity of the limit (19)
which is indeed the linear speed up of KPP fronts.

Existence results of a flow v satisfying (A1)–(A2)–(A3), which is incompress-
ible, periodic and exhibit ergodic components, were proved in detail by Hu et al.
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Fig. 1. N = 3, two cylindrical ergodic components of q aligned in the same direction with
a gap of height h ≥ 0 in between.

in [12] which followed a study done by Katok [13]. The result of Hu et al. [12]
states that “every compact manifold carries a hyperbolic ergodic flow”, provided
that the dimension of the manifold is greater or equal 3.

In our setting, we have a periodic structure in the domain � ⊆ R
N , and there-

fore, we can apply the results of Hu et al. [12] on the whole periodic set � and
get the flow v. After a normalization to a zero-average flow q (see next paragraph),
we will have a vector field q which satisfies all the properties to be considered as
particular example of incompressible flows with ergodic components Vi ⊆ �.

We work with advection fields which have zero average and admit ergodic
components in the same direction. To guarantee that the advection q (in Equa-
tion (4)) is of zero average, consider 2 cylinders which are aligned in the direction
of e = (1, 0, . . . , 0) denoted by

V1 := R × D1 and V2 := R × D2,

where D1 and D2 are two open balls in R
N−1 having the same radius R and centered

at O1(0, . . . , 0, a + 2R + h) (for some h ≥ 0) and O2(0, . . . , 0, a) respectively
and such that [0, L1]× (D1 ∪ D2) ⊆ C . The number h ≥ 0 is the distance between
∂V1 and ∂V2 and the centers of D1 and D2 are at a distance 2R +h from each other.

Then, define the vector field q over R
N (see Figure 1) by

⎧
⎪⎪⎨

⎪⎪⎩

q(x) = v(x) for all x ∈ V1,

where v is the vector field constructed in (A1)-(A3) above,
q(x1, . . . , xN ) = − v(x1, . . . , xN−1,−xN + 2R + h + 2a), x ∈ V2,

q(x) = 0, x ∈ �\(V1 ∪ V2) ⊇ (R × ∂D1) ∪ (R × ∂D2).

(22)

The vector field q in (22) is then smooth, incompressible, periodic, admits two
ergodic components V1 and V2 in the direction of e, vanishes on ∂V1, ∂V2 and in
�\(V1 ∪ V2) and satisfies
∫

C
q dx =

∫

[0,L1]×D1

v(x) dx −
∫

[0,L1]×D2

v(x1, x2,−x3 + 2R + h) dx = �0.

We can now state the following theorem in the case N ∈ {3, 4}.2

2 See Remark 8 below the proof of Theorem 3 about the case N = 4.
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Theorem 3. Let � = R
N or R × ω where N ∈ {3, 4}, ω ⊆ R

N−1 satisfies
(5) and let V1 := R × D1 and V2 := R × D2 be the cylindrical subsets of �,
defined above, in the same direction e = (1, 0, . . . , 0). Let q be a N-dimensional
incompressible flow of type (22) which has a zero-average over C and admits
two ergodic components V1 and V2. Consider the reaction–advection–diffusion
equation (4) with this particular advection q, where f and A satisfy (11–12) and
(13), respectively. Then, the minimal KPP speed c∗

�,A,Mq, f (e) satisfies

0 < lim
M→+∞

c∗
�,A,Mq, f (e)

M
< ∞ if and only if h := dist(V1, V2) > 0. (23)

In particular, if the ergodic components V1 and V2 of q are tangential to each other,
we then have

lim
M→+∞

c∗
�,A,Mq, f (e)

M
= 0.

Remark 6. The number of ergodic components in the above theorem, and in The-
orem 4 below, does not have to be exactly two for the result to hold. This was just
added to simplify the construction of a vector field of zero average. The above the-
orem, as well as Theorem 4, holds true in the case of an incompressible flow q with
a countable collection of ergodic components {Vi }i∈N provided that q vanishes on
the boundary of each Vi and

∫
C q = 0. One can easily see this from the computation

in (35).

We end this subsection with a result about the asymptotic behavior of
c∗
�,A,Mq, f (e), in the presence of large advection with ergodic components, in

dimensions N ≥ 5. The difference between the case N ≥ 5 and the case N = 3
or 4 is that the limit (19) will be always positive regardless of the distance h ≥ 0
between the ergodic components. That is, the limit (19) will be positive, in N ≥ 5,
even in the case where h = 0.

Theorem 4. Assume that N ≥ 5 and let � = R
N or R × ω where ω ⊆ R

N−1

satisfies (5). Let V1 and V2 be the cylindrical subsets of �, as defined above, in
the same direction e = (1, 0, . . . , 0), such that [0, L1] × (D1 ∪ D2) ⊆ C (C is
the periodicity cell of �). Consider an N-dimensional incompressible flow q of
type (22) which has a zero-average over C and admits two ergodic components V1
and V2. Consider the reaction–advection–diffusion equation (4) with this particular
advection q, where f and A satisfy (11–12) and (13), respectively. Then, the minimal
KPP speed c∗

�,A,Mq, f (e) always satisfies

0 < lim
M→+∞

c∗
�,A,Mq, f (e)

M
< ∞. (24)

2.3. A Comparison Between the Influence of Flows with Ergodic Components to
that of Shear Flows

We will compare the above results of Theorem 3, where the advection q
admits ergodic components, to the case of shear flows which always lead to a
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linear speed up of the KPP minimal speed. In the 3 dimensional setting, unlike
the flows with ergodic components (see Theorem 3 above), and with a remark-
able contrast, the limit limM→+∞ c∗

Mq(e)/M is always positive when q is a
shear flow in the direction of e. This is precisely Theorem 5 which appeared in
Berestycki [3] and Heinze [11]. For the reader’s convenience, we will present
a short proof of this theorem by using our result in [10] or the one in Zlatoš
[23].

Theorem 5. ([3,11]) Let N ≥ 2 and assume that the domain has the form � :=
R × ω where ω ⊆ R

d × R
N−1−d ⊆ R

N−1 satisfies (5), or ω is a bounded smooth
open subset of R

N−1 (in which case d = 0), that the direction of propagation is
e = (1, 0, . . . , 0) ∈ R

N and let q be a shear flow of the form

q(x) := (q1(x2, . . . , xN ), 0, . . . , 0) (25)

with q1 ∈ C1,δ(�), q1 �≡ 0 and
∫

C q1 = 0. Then,

lim
M→+∞

c∗
�,A,Mq, f (e)

M
= max
ψ∈J

∫
C q1(x2, . . . , xN )ψ

2
∫

C (ψ(x2, . . . , xN ))2 dx
> 0, (26)

where

J := {ψ = ψ(x2, . . . , xN ) ∈ H1
loc(ω),

ψ is periodic in the unbounded directions of ω}.

Remark 7. It is important to notice the remarkable difference between influence
of shear flows and the ergodic ones on the KPP speed. In Theorem 5, N = 3, we
see that shear flows make the limit (26) positive regardless of the configuration of
the flow over its components. To be more precise, the shear flow q could have, over
one periodicity cell, two components V1 and V2 which are tangential to each other
(as in Figure 2), where q vanishes on their boundaries ∂V1 and ∂V2, and yet, the
speed up of the KPP pulsating fronts stays linear (that is (26) holds true). However,
as we saw in Theorem 3 above, this cannot be the case for flows with ergodic
components when N = 3 (the speed up is linear with respect to the amplitude
of q if and only if the ergodic components are at a positive distance from each
other).

Fig. 2. A shear flow, over one periodicity cell C , having two cylindrical components aligned
in the same direction and tangential to each other. Over V1 ∩ V2, q = 0
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3. Proofs

In this section, we prove Lemma 1 and then the main results: Theorems 1, 2, 3
and 4. We also give a short proof of Theorem 5 which we reviewed in this work to
show the contrast between ergodic flows and shear flows in dimensions N ≥ 3.

Proof of Lemma 1 Let v ∈ C∞
b (�) (smooth and bounded function), I be a

measurable subset of R and let � denote the flow associated to q. Then, for all t ,
∫

�t (v−1(I ))
|v(x)− v(�−t (x))| dx =

∫

�t (v−1(I ))

∣
∣
∣
∣

∫ 0

−t

∂

∂s
(v(�s(x))) ds

∣
∣
∣
∣ dx

≤
∫

�t (v−1(I ))

∣
∣
∣
∣

∫ 0

−t

∣
∣
∣
∣
∂

∂s
(v(�s(x)))

∣
∣
∣
∣ ds

∣
∣
∣
∣ dx .

(27)

Now we separate two cases according to the sign of t . If t ≥ 0, (27) yields
∫

�t (v−1(I ))
|v(x)− v(�−t (x))| dx =

∫

�t (v−1(I ))

∫ 0

−t
|q(�s(x)) · ∇v(�s(x))| ds dx,

(by Fubini’s theorem) =
∫ 0

−t

∫

�t (v−1(I ))
|q(�s(x)) · ∇v(�s(x))| dx ds,

≤
∫ 0

−t

∫

�

|q(�s(x)) · ∇v(�s(x))| dx ds,

(see justification below) =
∫ 0

−t

∫

�

|q(y) · ∇v(y)| dy ds. (28)

In (28), we used the change of variable y = �s(x) = �(s, x), and since q is
incompressible, the Jacobian J (s, x) := det [∇x�(s, x)] of this change of variable
is equal to 1 (at any s and any x ∈ �). We refer the reader to Proposition 1.3 and
Proposition 1.4 in Majda and Bertozzi [17] for a detailed proof of this fact.2 If
t < 0, (27) yields that
∫

�t (v−1(I ))
|v(x)− v(�−t (x))| dx =

∫

�t (v−1(I ))

∫ −t

0
|q(�s(x)) · ∇v(�s(x))| ds dx,

(by Fubini’s theorem) =
∫ −t

0

∫

�t (v−1(I ))
|q(�s(x)) · ∇v(�s(x))| dx ds,

≤
∫ −t

0

∫

�

|q(�s(x)) · ∇v(�s(x))| dx ds,

=
∫ −t

0

∫

�

|q(y) · ∇v(y)| dy ds, (29)

2 For a fixed x , the Jacobian J (x, t) := det [∇x�(t, x)] satisfies the differential equation
∂ J

∂t
(x, t) = (∇x · q)|

�(t, x) J (x, t) with the initial condition J (x, 0) = det

[
∂�0

∂x

]
=

det
[

I dMN (R)

]
= 1 (recall that �0(z) = z for all z ∈ �). As ∇ · q ≡ 0, it follows

that ∂t J = 0 and hence J (x, ·) is constant as a function of t ∈ R and it must be equal to
J (x, 0) = 1.
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where the last passage, (29), can be justified in a similar way as in the previous case
(t ≥ 0) above. Therefore, in both cases (t ≥ 0 or t < 0), we have

∀v ∈ C∞
b (�),

∫

�t (v−1(I ))
|v(x)− v(�−t (x))| dx ≤ |t |

∫

�

|q(y) · ∇v(y)| dx .

(30)

By density, inequality (30) remains true for all v ∈ H1
loc(�). In particular, if w is a

first integral of q (see Definition 2 above), (30) becomes

∀t ∈ R,

∫

�t (w−1(I ))
|w(x)− w(�−t (x))| dx = 0. (31)

Moreover, if x ∈ �t (w
−1(I )), �−t (x) ∈ w−1(I ); thus, w(�−t (x)) ∈ I . From

(31) we have, for almost every z ∈ �t (w
−1(I )), w(z) = w(�−t (z)). This yields

that, for almost every z ∈ w−1(I ),�t (z) ∈ w−1(I ) for all t ∈ R. This allows us to
conclude that, up to a set of measure 0,

∀t ∈ R, �t (w
−1(I )) ⊆ w−1(I ).

The previous inclusion and the fact that the flow is measure preserving (the vec-
tor field q is incompressible) lead us to conclude that, up to a set of measure 0,
�t (w

−1(I )) = w−1(I ). In other words,

LN (�t (w
−1(I ))�(w−1(I ))) = 0, for all t ∈ R,

and this completes the proof of Lemma 1. ��
We are now in the position to prove Theorem 1.

Proof of Theorem 1 Let V be an ergodic component of the flow and let w be a
first integral of q. We consider the following function:

f : R −→ R

t �−→ LN (w−1((−∞, t]) ∩ V ).

f is an upper semi-continuous nondecreasing function which satisfies

lim
t→−∞ f (t) = 0 and lim

t→+∞ f (t) = LN (V ).

We assume to the contrary that f (R) �= {0,LN (V )}. We can then pick λ ∈
f (R)\{0,LN (V )} and t0 such that f (t0) = λ. We set W = w−1((−∞, t0]) ∩ V .
By definition of f and λ, we get

0 < LN (W ) = λ < LN (V ).

Moreover, W is the intersection of V (which is stable by the flow) with
w−1((−∞, t0]) which, by Lemma 1, is also stable by the flow, up to a set of
measure 0. Hence, W is stable by the flow up to a set of measure 0. However, this
contradicts the ergodicity of V . We can now conclude that f (R) = {0,LN (V )}.
Let

α = inf{t ∈ R, f (t) = LN (V )}.
One can see that, up to a set of measure 0, V = V ∩ w−1({α}), and therefore,
w(x) = α, for almost every x ∈ V . This completes the proof of the theorem. ��
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Proof of Theorem 2 1. We assume to the contrary that there exists (λ, μ) ∈ R
2

with λ �= μ and u ∈ H1(U ) verifying condition (Cλ,μ). Let ρ ∈ C∞
c (R

N ), such
that ρ ≥ 0, ρ has support in DN the open unit ball in R

N and
∫
RN ρ = 1.

For n ∈ N
∗, we set ρn : x �→ nρ (nx). ρn is a mollifier with support in the open

ball of center 0 and radius
1

n
.

Let

Un =
{

x ∈ R
N , dist(x,U ) ≤ 1

n

}
.

Let un = u � ρn , where we extend u by 0 outside U . Then, un ∈ C∞
c (Un) and

un|U

H1(U )−−−−→
n→+∞ u.

We denote by B1,n the ball of R
N of center (0, ..., 0, 1) and radius 1 − 1/n and by

B2,n the ball of R
N of center (0, ..., 0,−1) and radius 1 − 1/n. Then, un|B1,n = λ

and un|B2,n = μ (see Figure 3 in the case N = 3).
We now use cylindrical coordinates in R

N . That is, if (x1, . . . , xN ) are the Carte-
sian coordinates of x ∈ R

N , we denote by (r, ω, xN ) the cylindrical coordinates of
x , where r2 = x2

1 + · · · + x2
N−1 and ω ∈ SN−2, the (N − 2)-dimensional sphere

embedded in the plane of equation xN = 0, such that (x1, . . . , xN ) = (rω, xN ).

We have

λ−μ=un

⎛

⎝r, ω, 1 −
√(

1 − 1

n

)2

− r2

⎞

⎠−un

⎛

⎝r, ω,−1 +
√(

1− 1

n

)2

− r2

⎞

⎠.

Fig. 3. N = 3, after mollifying the function u, we have un |B1,n
= λ and un |B2,n

= μ
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Thus, by integrating un along a vertical path from the boundary of B1,n to the
boundary of B2,n , where r ≤ 1 − 1/n, we obtain

λ− μ =
∫ 1−

√(
1− 1

n

)2−r2

−1+
√(

1− 1
n

)2−r2

∂un

∂xN
(r, ω, s) ds.

Hence, by Cauchy–Schwarz inequality, we have

|λ− μ| ≤

√√
√
√
√2

⎛

⎝1 −
√(

1 − 1

n

)2

− r2

⎞

⎠

⎛

⎜
⎝
∫ 1−

√(
1− 1

n

)2−r2

−1+
√(

1− 1
n

)2−r2

×
(
∂un

∂xN
(r, ω, s)

)2

ds

) 1
2

. (32)

This yields that

∫ 1−
√(

1− 1
n

)2−r2

−1+
√(

1− 1
n

)2−r2

(
∂un

∂xN
(r, ω, s)

)2

ds ≥ (λ− μ)2

2

(
1 −
√(

1 − 1
n

)2 − r2

) .

When we integrate

(
∂un

∂xN

)2

, which is 0 on B1,n and B2,n , over the set

An =
{
(r, ω, xN ) ∈ U, 0 ≤ r ≤ 1 − 1

n
, −1 ≤ xN ≤ 1

}
,

we get
∫∫∫

An

(
∂un

∂xN

)2

=
∫ 1− 1

n

0

⎛

⎜
⎝
∫

SN−2

⎛

⎜
⎝
∫ 1−

√(
1− 1

n

)2−r2

−1+
√
(1− 1

n )
2−r2

(
∂un

∂xN
(r, ω, s)

)2

ds

⎞

⎟
⎠ dω

⎞

⎟
⎠ dr

≥
∣
∣
∣SN−2

∣
∣
∣ (λ− μ)2

∫ 1− 1
n

0

r N−2

2

(
1 −
√(

1 − 1
n

2
)

− r2

) dr,

(where we used the notation
∣
∣SN−2

∣
∣ := LN−2

(
SN−2

)
for the N − 2 dimensional

Lebesgue measure of SN−2). Moreover, as
√

x ≥ x for all x ∈ [0, 1], we can write
√(

1 − 1

n

)2

− r2 =
(

1 − 1

n

)√

1 −
(

nr

n − 1

)2

≥
(

1 − 1

n

)(

1 −
(

nr

n − 1

)2
)
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≥
(

1 − 1

n

)
− nr2

n − 1
.

Finally,

r N−2

2

(
1 −
√(

1 − 1
n

2
)

− r2

) ≥ r N−2

2
(

1 −
(

1 − 1
n − nr2

n−1

))

≥ 1

2
× r N−2

1

n
+ nr2

n − 1

.

In the case N = 2, we obtain
∫ 1− 1

n

0

1

2

r N−2

1
n + nr2

n−1

dr =
∫ 1− 1

n

0

1

2

dr
1
n + nr2

n−1

= 1

2

√
n − 1

[
arctan

(
nr√
n − 1

)]1− 1
n

0

∼
n→+∞

π
√

n

4

(33)

and, in the case N = 3,
∫ 1− 1

n

0

1

2

r N−2

1
n + nr2

n−1

dr =
∫ 1− 1

n

0

1

2

r dr
1
n + nr2

n−1

= −n − 1

4n

[
log
(

1
n + nr2

n−1

)]1− 1
n

0

∼
n→+∞ − log n

4
.

(34)

In both cases, we end up with

∫∫∫

U
|∇un|2 ≥

∫∫∫

An

(
∂un

∂xN

)2

≥
∣
∣
∣SN−2

∣
∣
∣ (λ− μ)2

∫ 1− 1
n

0

1

2

(
r N−2

1
n + nr2

n−1

)

dr,

and the right-hand side tends to +∞ as n tends to +∞ if λ �= μ because of (33)
and (34).

2. In the case N ≥ 4, let us consider the function u ∈ H1(U ) verifying condition
(Cλ,μ) for which we have equality in the Cauchy–Schwarz inequality (32), in the
limit n → +∞. Over the set

A =
{
(r, ω, xN ), 0 ≤ r ≤ 1, −1 ≤ xN ≤ 1, r2 + (xN − 1)2 ≥ 1,

r2 + (xN + 1)2 ≥ 1
}
.

This function is of the form

u(r, ω, xN ) = λ+ μ

2
+ λ− μ

2(1 − √
1 − r2)

xN .
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For such a function,
∂u

∂xN
is square integrable on A. Indeed, the previous inequalities

are equalities, and we have

∫∫∫

A

(
∂u

∂xN

)2

=
∣
∣
∣SN−2

∣
∣
∣ (λ− μ)2

∫ 1

0

r N−2

2
(

1 − √
1 − r2

) dr

and
r N−2

2
(

1 − √
1 − r2

) ∼
r→0

r N−4 which is integrable in the neighborhood of 0 if

N ≥ 4.

Moreover, as u is independent ofω, we are left to prove that
∂u

∂r
is square integrable

on A. Indeed,

∂u

∂r
= λ− μ

2
xN × r√

1 − r2(1 − √
1 − r2)2

.

Thus,
∫∫∫

A

(
∂u

∂r

)2

=
∫ 1

0

∫

SN−2

∫ 1−√
1−r2

−1+√
1−r2

(λ−μ)2
4

s2 × r2

(1−r2)(1 − √
1 − r2)4

r N−2 ds dω dr

=
∣
∣
∣SN−2

∣
∣
∣
(λ− μ)2

6

∫ 1

0
(1 −

√
1 − r2)3 × r N

(1 − r2)(1 − √
1 − r2)4

dr

=
∣
∣
∣SN−2

∣
∣
∣
(λ− μ)2

6

∫ 1

0

r N

(1 − r2)(1 − √
1 − r2)

dr.

We notice here that
r N

(1 − r2)(1 − √
1 − r2)

∼
r→0

2r N−2. Since N ≥ 4, it is inte-

grable in the neighborhood of 0. Therefore,
∫∫∫

A |∇u|2 < ∞, and we can now
easily extend u on U in order to have u ∈ H1(U ). ��

Proof of Theorem 3 We know, from (19), that

lim
M→+∞

c∗
�,A,Mq, f (e)

M
= max
w∈I A

1

∫

C
(q · ẽ) w2

∫

C
w2

.

From Remark 2, this limit is strictly positive whenever there exists a first integral
w0 ∈ I (not necessarily in I A

1 ) such that
∫

C q · ew2
0 > 0. As q has two ergodic

components V1 and V2, it follows from Theorem 1 above that any first integral
w ∈ I must be constant almost everywhere on V1 and V2.

First, let us assume that h > 0, that is there is a gap between the cylindrical
ergodic components V1 and V2. We can then find w0 which is a smooth periodic
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function over � such that w0 = λ over V1 and w0 = μ over V2 for some λ �= μ.
As q ≡ 0 on �\(V1 ∪ V2), we then get w0 ∈ I. Moreover, w0 satisfies

∫

C
(q · e)w2

0 =
∫

C∩V1

(q · e)w2
0 +
∫

C∩V2

(q · e)w2
0

= λ2
∫

[0,L1]×D1

q(x) · e dx + μ2
∫

[0,L1]×D2

q(x) · e dx

= (λ2 − μ2)

∫

[0,L1]×D1

q(x) · e.

(35)

The last line follows from (22) and a change of variables between D1 and D2.
Having λ �= μ and

∫

[0,L1]×D1

q(x) · e =
∫

V1∩C
q · e =

∫

V1∩C
v(x) · e �= 0,

we can see that
∫

C (q · e)w2
0 > 0 by choosing λ and μ suitably. This finishes the

proof of the sufficient condition.
Let us now turn to the proof of the other direction of the theorem. We assume

that h = 0 and we let w ∈ I be any first integral of q. Using Theorem 1 and the
assumption that V1 and V2 are ergodic components of q, we know that w = λ

almost everywhere on V1 and w = μ almost everywhere on V2 for some constants
(λ, μ) ∈ R

2. On the other hand, a first integral w ∈ I must be at least H1
loc(�).

Having N = 3 together with the fact that h = 0, Theorem 2 then yields that λ = μ.
Doing the same computation (35) above, with w0 replaced by the present w, we
get
∫

C q · ew2 = 0. This holds for any arbitrarily chosen w ∈ I and, therefore,

limM→+∞
c∗
�,A,Mq, f (e)

M = 0 in the case where h = 0. ��

Remark 8 (About N = 4). The result of Theorem 3 holds true also in the case
where N = 4. That is, when � = R

4 or � = R × ω with ω ⊆ R
3 satisfying

(5). When h > 0, we simply do the same as above in the proof of Theorem 3. In
the case where h = 0, that is the cylindrical ergodic components V1 and V2 are
in the same direction e1 = (1, 0, 0, 0) and tangent to each other, we need to be
a bit more careful. We know that any w ∈ I, will be equal to a constant λ over
V1 and to a constant μ over V2. Here, N = 4, we also claim that the condition
w ∈ H1

loc(�) together with h = 0 will lead to λ = μ and then the analogous
quantity in (35) will be 0. In fact, if λ �= μ, then as w ∈ H1

loc(R
4) (or H1

loc(�)),
then for almost every x1 ∈ R, the function w(x1, ·, ·, ·) must be in H1

loc(R
3). In

particular w(0, ·, ·, ·) ∈ H1(K ) where we chose K ⊂ R
3 to contain parts of D1

as well as parts of D2. However, over the bounded set K , w(0, ·, ·, ·) takes two
different values λ and μ. Applying Theorem 2 (part 1), we get a contradiction.
Therefore, λ = μ and the function w must have the same constant value over V1
and V2. This finishes the proof in the 4-dimensional case.



348 Mohammad El Smaily & Stéphane Kirsch

Proof of Theorem 4 The proof of Thoerem 4 is similar to that of Theorem 3.
However, we do not need to assume that h > 0, here, as the dimension is N ≥ 5.
Indeed, we need to construct an H1

loc(R
N ) first integral of q which takes a constant

value λ on V1 := R × D1 and a different constant value μ on V2 := R × D2.
This construction is easy when the cylindrical components V1 and V2 are parallel
and not tangent to each other, that is when h > 0. So, we just look at the case
where h = 0. The regularity that we need this first integral, call it u0, to have, is
H1

loc(R
N ). One can see that there is the problem of square-integrability of the N th

partial derivative of u0 on any compact which contains a part of V1 and another
part of V2. However, this can be resolved by observing that a slice (in the x1 = 0
plane for instance) of a cylindrical domain as V1 = R × D2 ⊆ R × R

N−1 or V2
is an (N − 1)-dimensional ball (with N − 1 ≥ 4). Hence, we can apply part 2 of
Theorem 2 and consider the function u ∈ H1

loc(R
N−1) which satisfies the desired

properties on the slices D1 ⊂ R
N−1 and D2 ⊂ R

N−1 of V1 and V2 respectively.
That is, u = λ on D1 and u = μ on D2 with λ �= μ and u ∈ H1

loc(R
N−1).

We now define u0, in N -variables, by u0 = λ on V1 ⊂ R
N and u0 = μ on V2 ⊂ R

N ,
with λ �= μ. Obviously, the function u0 ∈ H1

loc(R
N ) and hence a first integral of

q even though h = 0. Now, we redo the same computations (35) with the function
u0 ∈ H1

loc(R
N ) instead of w0 and get
∫

C
(q · e)u2

0 = (λ2 − μ2)

(∫

C
v(x) · e

)
> 0,

for λ and μ chosen suitably so that λ− μ has the same sign as
∫

C v · e. This leads
us to the conclusion that

lim
M→+∞

c∗
�,A,Mq, f (e)

M
= max

w∈I

∫

C
(q · ẽ) w2

∫

C
w2

> 0,

independently of whether h is positive or zero, whenever N ≥ 5, and finishes the
proof of Theorem 4. ��
We end this section by giving a short proof of Theorem 5 for the sake of complete-
ness.

Proof of Theorem 5 We know from [10,23] (this is Theorem B which we reviewed
above) that

lim
M→+∞

c∗
�,A,M q, f (e)

M
= max
w ∈ I A

1

∫

C
(q · ẽ) w2

∫

C
w2

,

where C is the periodicity cell of �. Notice that, in this particular case, C =
[0, L1] × Cω where L1 is the x1 period of the diffusion A and the reaction f in
Equation (4) and Cω is the periodicity cell of the section ω of� (in the case where
d ≥ 1) and Cω = ω in the case d = 0. In this present situation, the vector field
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q is uni-directional. That is, for any x ∈ � where q1(x) �= 0, the streamline Tx

passing through x is parallel to e. As q1 �≡ 0 in ω and
∫

Cω
q1 = (

∫
C q1)/L1 = 0,

there exists z ∈ ω and an open neighborhood U ⊆ ω of z such that q1(z) > 0
and q1 > 0 on U . Let α = α(x2, . . . , xN ) ∈ C∞

c (U ) be a compactly supported
smooth function such that α(z) > 0, α ≥ 0, α �≡ 0 in U . Thus,

∫
U q1α

2 > 0 and∫
U q1α > 0. We may, without any loss, normalize α so that

∫
C α

2 dx = 1.
Moreover, as q = (q1(x2, . . . , xN ), 0, . . . , 0), then every first integralw of q is

independent of x1 and has the form w = β(x2, . . . , xN ). Therefore, I = J in the
case of shear flows. Hence, the function α ∈ I and moreover one can find λ ≥ 0
such that α + λ ∈ I A

1 . The following then holds

∫

C
q · ẽ(α + λ)2 dx =

⎛

⎜
⎜
⎜
⎝

L1

∫

U
q1α

2 + 2λL1

∫

U
q1α + λ2

∫

C
q1

︸ ︷︷ ︸
=0

⎞

⎟
⎟
⎟
⎠
> 0.

Therefore,

max
w ∈ I A

1

∫

C
(q · ẽ) w2

∫

C
w2

≥
∫

C
q1(α + λ)2 dx > 0,

and this completes the proof of Theorem 5. ��
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A Incompressible Flows Carry No Ergodic Components in 2D

In the two-dimensional case, there are no incompressible flows with ergodic
components in the sense of Definition 5.

Indeed, if q ∈ C1,δ(�) is a vector field verifying (7) and (9), with � ⊆ R
2,

there exists φ ∈ C2,δ(�) such that q = ∇⊥φ. The function φ is then a first integral
of q and thus is constant a.e on any ergodic component by Theorem 1. Assume,
to the contrary, that there exists E an ergodic component of q and λ ∈ R such that
φ(x) = λ almost everywhere on E . We assume moreover that q does not vanish
on E , since any stationary point of q is already stable by the flow. We finally set

Ẽ = {x ∈ E, φ(x) = λ and q(x) �= 0}.
Ẽ is clearly an ergodic component of q, has same Lebesgue measure as E , and
since Ẽ does not contain any stationary point of q, we have

Ẽ ⊂ ∂Vλ, where Vλ = {x ∈ �, φ(x) < λ}.
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Since the outward unit normal of Vλ is n = ∇φ
|∇φ| whenever it is defined, it then

follows, from Stokes theorem, that
∫

Ẽ
|q| ≤

∮

∂Vλ
|q| =

∮

∂Vλ
∇φ · n =

∫∫

Vλ
�φ < +∞. (36)

In fact, (36) is also true for each of the subsets

Ẽk =
{

x ∈ E, φ(x) = λ and |q(x)| ≥ 1

k

}
, k ∈ N

of Ẽ . That is,

∀k ∈ N,
1

k
L1(Ẽk) ≤

∫∫

Vλ
�φ < ∞.

Hence, L2(Ẽ) = 0 because Ẽ is σ -finite for the 2-dimensional Lebesgue measure
(Ẽ = ∪k∈N Ẽk). This is a contradiction and so an ergodic component can not exist
in the two-dimensional case.

B On the Zero-Average Assumption on Incompressible Flows

We claimed in Remark 1 above that the normalization (9) of the incompress-
ible vector field is equivalent to having all the N (not only d) components of the
advection field q. This will be the goal of the following proposition. As the coeffi-
cients and the domain of the reaction–advection–diffusion which we consider have
a periodic structure, it will be sometimes convenient to use the following notations.

Definition 6. Having a domain � ⊆ R
d × R

N−d with a periodic nature given by
(5), we denote the set of equivalence classes modulo the periods L1, . . . , Ld by

�̂ := �
/

L1Z × · · · × LdZ × {0}N−d = �
/

L1e1 ⊕ · · · ⊕ Lded , (37)

where {e1, . . . , ed , . . . , eN } is the standard basis of R
N = R

d ×R
N−d .We also set

T := R
N
/

L1Z × · · · × LdZ × {0}N−d = R
N
/

L1e1 ⊕ · · · ⊕ Lded . (38)

Each x ∈ � will then have an equivalence class x̂ ∈ �̂ and for each L-periodic
function h : � → R

m (m ∈ N) we can define the function ĥ : �̂ → R
m defined by

∀x ∈ �, ĥ(x̂) := h(x).

Proposition 1. Consider an incompressible field q : � → R
N satisfying (7) and

(9). Then,

∀ 1 ≤ i ≤ N ,
∫

C
qi (x) dx = 0

or equivalently
∫

C
q(x) dx = 0, where C is the periodicity cell of� (see (6) above).
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The proof of Proposition 1 is an application of the following preliminary lemma.

Lemma 2. Let w ∈ I be a first integral of q. Then, for all φ ∈ H1
per,loc(�) ≡

H1(�̂), we have
∫

C
wq · ∇φ dx = 0 =

∫

�̂
ŵq̂ · ∇φ̂. (39)

Proof. Since ∇ · q ≡ 0 in �, it follows that for all φ̂ ∈ H1(�̂) and for almost
every x̂ ∈ �̂

∇ · (q̂(x̂)φ̂(x̂)) = q̂(x̂) · ∇φ̂(x̂).
Due to the periodicity of φ, w, q and � and the condition q · ν = 0 on ∂�, the
boundary terms vanish in the following integrals (integrating by parts):

∫

C
wq · ∇φ dx :=

∫

�̂
ŵq̂ · ∇φ̂ dx̂ =

∫

�̂
ŵ∇ · (q̂φ̂) dx̂

= −
∫

�̂
∇ŵ · q̂φ̂

= 0 (since w ∈ I).

Proof of Proposition 1. We already have
∫

C qi = 0 for all i ≤ d. Fix any i such
that N ≥ i > d and observe that qi = q · ei , where ei is the ith member of the
canonical basis. On the other hand, we have ei = ∇x xi and, as i > d, φ(x) = xi

is (L1, . . . , Ld)-periodic in (x1, . . . , xd) over �. Thus, φ(x) = xi is admissible as
a test function in (39). We apply Lemma 2 with φ(x) = xi and w ≡ 1 to get

∫

C
q · ei = 0.

This proves that
∫

C
qi (x) dx = 0 for all i > d and completes the proof of Propo-

sition 1. ��
In the precise limit which describes the asymptotic behavior of the KPP minimal

speed within large advection, El Smaily and Kirsch [9], El Smaily and Kirsch ek1,
Zlatoš zlatosARMA show that the quantity

∫
C q · ew2, where e is a fixed unitary

direction in R
d × {0}N−d and w ∈ I, plays the important role. To analyze this

variational quantity over the family of first integrals I in dimensions N ≥ 3, the
next lemma could be seen as a preliminary tool to work with “N − 1 dimensional
slices” of the cell C ⊆ �.

Lemma 3 (quantities over a slice of the domain). Let w ∈ I (w is a first integral
of q) where q satisfies (7) and (9) and the domain � ⊆ R

N satisfies (5). Fix any
1 ≤ i ≤ d and denote by

Ci,0 := C ∩ {xi = 0}
= {(x1, . . . , xd , xd+1, . . . , xN ) ∈ C ⊂ � such that xi = 0} . (40)

Then,
∫

C
(q · ei )w

2 dx = Li

∫

Ci,0
(q · ei )w

2. (41)
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Remark 9. The result in the above lemma can be stated also for integrals of the
form

∫
C (q · ei )w

m dx for all m ≥ 1–as long as wm ∈ H1
loc(�) and q · ∇w = 0

almost everywhere in �. We will demonstrate Lemma 3 only in the case m = 2.

Proof. The proof of this lemma is similar to that of Lemma 2 above. The only
difference here is that we consider here a function φ ∈ H1

loc(�) instead of H1(�̂).
This means that the test functionsφ in the present proof are not necessarily periodic,
and hence, we may have non-zero boundary terms upon integrating by parts. Indeed,
since w is a first integral of q, we then have φq · ∇(w2) = 0 for all φ ∈ H1

loc(�)

and for almost every x ∈ � ⊇ C . This, together with ∇ · q ≡ 0 in �, yields that

0 =
∫

C
φq · ∇(w2)

=
∫

C
∇ · (φqw2)−

∫

C
∇φ · qw2

=
∫

∂C
φw2q · ndσ −

∫

C
∇φ · qw2, (42)

where n stands for the outward unit normal vector to the cell C andσ is the Lebesgue
measure induced over ∂C . Since i ≤ d, � is Li -periodic in the ith direction and
thus we can rewrite ∂C in the following format

∂C = (C ∩ ∂�) ∪ Ci,0 ∪ Ci,Li ,

where

∀κ ∈ [0, Li ], Ci,κ := {x ∈ C such that xi = κ}.
Notice that, in this setting, we have n ≡ ν on C ∩ ∂� where we can use the
assumption q ·ν ≡ 0; while, n = −ei on Ci,0 and n = ei on Ci,Li . As a consequence,
we can rewrite the last computation as

0 =
∫

∂C
φw2q · n −

∫

C
∇φ · qw2

=
∫

C∩∂�
φw2 q · n

︸︷︷︸
=0

−
∫

Ci,0

φw2q · ei +
∫

Ci,Li

φw2q · ei

−
∫

C
∇φ · qw2

= −
∫

Ci,0

φw2q · ei +
∫

Ci,Li

φw2q · ei −
∫

C
∇φ · qw2.

(43)

In this step, we pick the test function φ(x) = xi for all x ∈ �. Notice that φ
is not Li -periodic in xi , while ∇φ = ei , φ|Ci,Li

= Li and φ|Ci,0 = xi |{xi =0} = 0.

With this particular φ,
∫

C
∇φ · qw2 can be written as

∫

C
ei · qw2. We can also

simplify the other terms of the right hand side of (43) as follows
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−
∫

Ci,0

φw2q · ei +
∫

Ci,Li

φw2q · ei = −
∫

Ci,a

0 × (w2q · ei )+ Li

∫

Ci,Li

w2q · ei

= Li

∫

Ci,0

w2q · ei (as q is Li -periodic).

Eventually, we get from (43) and the last simplification

0 = Li

∫

Ci,0

w2q · ei −
∫

C
ei · qw2, (44)

and this completes the proof of Lemma 3.
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