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Abstract. We improve on recent results that establish the existence of
solutions of certain semilinear wave equations possessing an interface that
roughly sweeps out a timelike surface of vanishing mean curvature in
Minkowski space. Compared to earlier work, we present sharper estimates,
in stronger norms, of the solutions in question.
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1. Introduction

The goal of this paper is to refine recent work [10,11] that proves the existence
of a solution u = uε(t, x) (x ∈ R

n, t ∈ R) of the semilinear wave equation

utt − Δu +
2
ε2

(u2 − 1)u = 0, 0 < ε � 1 fixed (1)

such that, roughly speaking, u exhibits an interface near a timelike hypersur-
face whose Minkowskian mean curvature identically vanishes, as long as the
hypersurface remains smooth. To describe the problem, let Γ be a smooth
timelike embedded hypersurface in (−T∗, T ∗) × R

n, for some T∗, T ∗ > 0 of
vanishing Minkowski mean curvature, and such that

Γt := {x ∈ R
n : (t, x) ∈ Γ}

is homeomorphic to S
n−1 for every t. The condition that the Minkowskian

mean curvature vanishes is a nonlinear geometric wave equation, and smooth
solutions are known to exist, locally in t, for suitable compact Cauchy data,
see for example [14]. We remark that when n = 2 (which we will assume
throughout most of this paper) the equation is in some sense integrable and
there is essentially an explicit formula for solutions (see Sect. 1.1 below).
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The fact that Γt is a topological sphere for every t implies that (−T∗, T ∗)×
R

n)\Γ consists of two components, one bounded and one unbounded. Let O
denote the bounded component, and

signO(t, x) :=

{
1 if (t, x) ∈ O
−1 if (t, x) ∈ Oc.

The following result was proved in [10,11]:

Theorem A ([10,11]). Given Γ as above, for every ε ∈ (0, 1] there exists a
solution u of (1) such that for any T0 < T∗ and T 0 < T ∗,

‖uε − signO‖L2((−T0,T 0)×Rn) ≤ C
√

ε. (2)

for a constant C that may depend on T0, T
0 but is independent of ε.

In [11], Theorem A is proved under the assumption that Γ0 is a topological
torus, but allowing rather general initial velocity for Γ, whereas the proof in
[10] allows Γ0 to be an arbitrary smooth connected compact manifold with zero
initial velocity. The theorem as stated above follows by combining arguments
from the two papers [10] and [11]. For n = 2 and Γ0 homeomorphic to S

1,
which is our main focus, it follows directly from [11].

Our goal is to give a more precise description of the solution uε found in
Theorem A. In particular, heuristic arguments suggest that it should satisfy

uε(t, x) ≈ q

(
d̃(t, x)

ε

)
, q(s) := tanh(s) (3)

where d̃(·, ·) is (a small perturbation of) the signed Minkowskian distance from
Γ [see (8) below for a definition]. The profile q = tanh arises naturally from
the fact that it satisfies − q′′ + 2(q2 − 1)q = 0, making it a stationary solution
of (1) in 1 dimension with ε = 1.

The estimates in [10,11] are however too weak to provide a convincing
demonstration of (3), since1∥∥∥∥signO −q

(
d

ε

)∥∥∥∥
L2((−T0,T 0)×Rn)

≈ √
ε.

Thus (2) implies2 that
∥∥uε − q(d

ε )
∥∥

L2((−T0,T 0)×Rn)
� √

ε, but at the same time,
the scaling in (2) means the estimate is too weak to determine whether uε is
closer to signO or q(d/ε) or indeed some other profile.

In our main result, we restrict our attention to n = 2, and we establish
a more precise description of the solution uε from Theorem A. In our main

1 We are being a little imprecise here, since the signed Minkowskian distance function d
is only defined near Γ. So to state this estimate properly, one would need either to re-
strict attention to this neighborhood, or extend d in some way to the complement of this
neighborhood.
2 Indeed, the main results [11] are stated in this way, that is, with an estimate of uε −q(d/ε)
rather than uε − signO. This is correct but arguably misleading.



NoDEA Evolving interfaces in certain nonlinear wave equations Page 3 of 21  15 

theorem, we consider a solution uε of (1) as constructed in [10,11], and we
prove that

‖uε − Uε‖L2((−T0,T 0)×R2) ≤ Cε3/2, ‖D(uε − Uε)‖L2((−T0,T 0)×R2) ≤ Cε1/2

(4)
for some function Uε, constructed below, of approximately the form Uε =
q(d̃/ε), where d̃ is a perturbation of the signed Minkowskian distance to Γ.
This improves on (2) in that we have both a stronger norm and stronger
estimates. In particular, as will be apparent from the construction of Uε below,
conclusion (4) may be understood as a precise and satisfactory formulation of
the heuristic principle (3). Our construction and our results will show that
‖Duε‖L2 , ‖DUε‖L2 both diverge at a rate of ε−1/2 as ε → 0, which makes the
second estimate in (4) quite striking.

The construction of Uε and the full statement of our main theorem are
presented in Sect. 1.2 below.

Our arguments in this paper do not directly address the wave Eq. (1).
Instead, we start from estimates proved in [10,11] and summarized in Sect.
1.3 below, which provide considerably more information about the solution
uε than is stated in Theorem A above. We will prove our main results by
squeezing as much information as possible out of these prior estimates.

The results of [10,11], on which we improve here, may be seen as
Minkowskian analogs of the large body of theory that gives rigorous asymptotic
descriptions of interfaces in semilinear elliptic and parabolic equations asso-
ciated to a double-well potential, see for example [7,8,16]. Prior to [10,11],
the connection between (1) and timelike extremal surfaces, as well as related
questions, were explored by formal arguments in [15,17], and in the cosmology
literature, see for example [5,12,18], in connection with hypothetical cosmic
domain walls. Some conditional results in the direction of [10,11] were obtained
a little earlier in [3], and results about scattering of a smooth, nearly flat in-
terface in a solution of (1) are proved in [6], following earlier results about
scattering of nearly flat Minkowskian extremal hypersurfaces, see [4,13].

1.1. Normal coordinates and the signed distance function

Most of our analysis will be carried out in Minkowsian normal coordinates
near Γ, which we now describe.

First, we will write ψ : (−T∗, T ∗) × S
1 → R

1+2 to denote a map that
parametrizes the extremal surface Γ. We will write (y0, y1) to denote a generic
point in (−T∗, T ∗) × S

1, and we will take ψ to have the form

ψ(y0, y1) = (y0, �ψ(y0, y1)).

Although we will not use this fact, we remark that Γ := Image(Ψ) is extremal
(that is, has vanishing mean curvature) if �ψ : (−T∗, T ∗) × S

1 → R
2 has the

form
�ψ(y0, y1) =

1
2
(a(y0 + y1) + b(y0 − y1)) (5)

for some smooth a, b : S1 → R
2 such that |a′| = |b′| = 1 everywhere; see [2] for

a discussion.
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Next, for (y0, y1) ∈ (−T∗, T ∗) and y2 ∈ R, we define

Ψ(y0, y1, y2) := ψ(y0, y1) + y2ν(y0, y1) ∈ R
1+2, (6)

where ν(y0, y1) is the (Minkowskian) unit normal to Γ at ψ(y0, y1), and we
orient ν so that Ψ(y0, y1, y2) ∈ O for y2 > 0, where we recall that O is the
bounded set enclosed by Γ. Thus ν “points inward”. We will restrict the domain
of Ψ to a set of the form

Domain(Ψ) = (−T1, T
1) × S

1 × (− 2ρ, 2ρ), (7)

for T1, T
1, ρ fixed in Proposition 1 below. We also tacitly require that Ψ is a

diffeomorphism onto its image; for a given T1, T
1, this can always be achieved

by shrinking ρ. We will write N := Image(Ψ) ⊂ R
1+2 and for points (t, x) ∈ N ,

we will use the change of variables

N 
 (t, x) = Ψ(y0, y1, y2).

Equivalently, we can view (y0, y1, y2) as defining a local coordinate system in
N . We will sometimes refer to these as normal coordinates near Γ. The y2

coordinate is exactly the signed Minkowskian distance d(·, ·) to Γ, in the sense
that for (t, x) ∈ N ,

(t, x) = Ψ(y0, y1, y2) ⇐⇒ d(t, x) = y2. (8)

One can take (8) to be the definition of the signed distance. Alternately, for a
proof of (8) that starts from an eikonal equation that characterizes the signed
distance function, see for example [11], Proposition 5 and Corollary 7.

1.2. Main theorem, and construction of Uε

Given a solution uε of the semilinear wave Eq. (1) on R
1+2, we will always

write vε : (−T∗, T ∗)×S
1 × (− 2ρ, 2ρ) → R to denote the same solution written

in the Minkowskian normal coordinate system. That is, we set

vε := uε ◦ Ψ. (9)

We will use the notation

q(z) = tanh(z), qε(z) = tanh(
z

ε
).

Given f : R → R and s ∈ R, we write τsf to denote the translation of f by s:

τsf(z) := f(z − s).

For ρ to be fixed in Proposition 1 below, we define Qε : R → R by

Qε(z) := qε(z)χ(z) + (1 − χ(z)) sign(z) (10)

where χ ∈ C∞(R) is a fixed even, nonnegative function such that

χ(z) = 1 if |z| ≤ ρ/3, χ(z) = 0 if |z| ≥ 2ρ/3, zχ′(z) ≤ 0.

It is easy to see that for every k ∈ N, there exist constants (depending on k)
such that

‖Qε − qε‖Hk ≤ Cε−c/ε. (11)
We will prove
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Lemma 1. Let uε be the solution of (1) described in Proposition 1 below. Then
for every (y0, y1) ∈ (−T1, T

1) × S
1, there is a unique s∗(y0, y1) such that

‖vε(y0, y1, ·) − τs∗(y0,y1)Qε‖L2(I) = min
σ∈R

‖vε(y0, y1, ·) − τσQε‖L2(I).

Note that s∗(y0, y1) depends on ε. For (y0, y1, y2) ∈ (−T1, T
1) × S

1 × I,
we now define

Vε(y0, y1, y2) := Qε(y2 − s∗(y0, y1)).

Thus, Vε may be seen as a canonical projection of vε onto the space of functions
exhibiting an almost-canonical3 interface near Γ.

Finally, for (t, x) ∈ (−T0, T
0) × R

2 we define

Uε :=

⎧⎪⎨
⎪⎩

1 if (t, x) ∈ O\N
Vε ◦ Ψ−1 if (t, x) ∈ N
− 1 otherwise.

(12)

We will write ‖ · ‖H1
ε (Ω) for the norm defined by

‖wε‖2
H1

ε (Ω) :=
1
ε
‖wε|2L2(Ω) + ε‖Dwε‖2

L2(Ω) (13)

where Dwε denotes the full gradient in Ω. Thus, for example, if Ω is an open
subset of Rt × R

2
x, then Dwε = (∂twε, ∂x1wε, ∂x2wε).

Our main result is

Theorem 1. Assume that Γ ⊂ (−T∗, T ∗) × R
2 is a smooth embedded timelike

minimal surface admitting a parametrization of the form (5), so that normal
coordinates may be defined as in (6).

For ε ∈ (0, 1], let uε be the solution of (1) from Theorem A, described in
more detail in Proposition 1 below.

Then for every T0 < T∗ and T 0 < T ∗, there exists a constant C, inde-
pendent of ε, such that

‖uε − Uε‖H1
ε ((−T0,T 0)×R2) ≤ Cε.

and in addition,∫
S1

s2
∗ + (∂y0s∗)2 + (∂y1s∗)2dy1 ≤ Cε2 for every y0 ∈ (−T1, T

1). (14)

Note since the Minkowskian distance d to Γ can be identified with the y2

coordinate, we can write Uε near Γ in the form Qε(d − s ◦ P ) where P is the
Minkowskian projection onto Γ. Since s is small and Qε is very close to q( ·

ε ),
the theorem can be seen as a justification (and clarification) of the heuristic
principle (3).

Our arguments could also be used to improve on Theorem A in dimen-
sions n ≥ 3. However, the restriction to n = 2 dimensions is used in an essential
way in Lemma 5 below, so any such improvements would be much less satis-
factory than the ones we are able to prove for n = 2.

3 “Almost”, because of the (exponentially small) difference between qε and Qε.
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1.3. Prior results

The proof of Theorem A in [10,11] rests on weighted energy estimates for
the solution vε as written in normal coordinates. These energy estimates, as
mentioned above, provide more information than is recorded in Theorem A,
and they will provide the starting point for our analysis. Before recalling them
we introduce some notation.

We will use the notation

c0 :=
∫ ∞

−∞

(
ε

2
(q′

ε)
2 +

1
2ε

(q2
ε − 1)2

)
dz for every ε > 0.

(In fact c0 = 4/3.) We will write I := (− ρ, ρ). For a function vε : (−T∗, T ∗) ×
S

1 × I → R, we will write

Θ1(y0) :=

∫
S1

[∫
I

(1 + y2
2)

(
ε

2
(∂y2vε)

2 +
1

2ε2
(v2

ε − 1)2
)

dy2 − c0

]
dy1

Θ2(y0) :=

∫
S1

∫
I

y2
2(vε − sign(y2))

2 dy2 dy1

Θ3(y0) :=

∫
S1

∫
I

ε

2

[
(∂y0vε)

2 + (∂y1vε)
2
]

+ y2
2

[
ε

2
(∂y2vε)

2 +
1

2ε
(1 − v2

ε)2
]

dy2 dy1

where in every case, vε is understood to be evaluated at the value of y0 ap-
pearing in the argument of Θj .

Proposition 1. ([11]) Assume that Γ ⊂ (−T∗, T ∗) × R
2 is a smooth embedded

timelike minimal surface admitting a parametrization of the form (5), so that
normal coordinates may be defined as in (6).

Then for every ε ∈ (0, 1], there exists a solution uε : R × R
2 → R of

the semilinear wave Eq. (1) such that (2) holds, together with the following
estimates:
1. Estimates in normal coordinates near Γ. First, for every T0 < T ∗ and
T 0 < T ∗, there exists a constant C > 0 and a choice of the parameters ρ, T1, T

1

in the definitions of Domain(Ψ) and Θj , j = 1, 2, 3 such that vε := uε ◦ Ψ
satisfies

Θj(y0) ≤ Cε2 for all y0 ∈ (−T1, T
1) and for j = 1, 2, 3. (15)

C, T1, T
1, ρ may depend on Γ, T0, T

0 but are independent of ε ∈ (0, 1].
2. Estimates in (t, x) coordinates far from Γ. Second, for the same T1, T

1,
ρ and C, if we define

N ′ := Ψ((−T1, T
1) × S

1 × I)

M :=
(
(−T0, T

0) × R
2
)\N ′

Mt := {x ∈ R
2 : (t, x) ∈ M} ,

then ∂Mt is uniformly smooth for t ∈ (−T0, T
0), and∫

M

ε

2
|Duε|2 +

1
2ε

(u2
ε − 1)2dx dt ≤ Cε2. (16)
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3. Additional properties. Finally, (2) holds, and there exists some R > 0 such
that

uε = signO = −1 for all (t, x) such that t ∈ (T∗, T ∗), |x| ≥ R. (17)

These are the n = 2 case of conclusions that are proved4 in [11]. More
precisely, the relevant initial data are constructed in Lemma 9. The choice5

of T1, T
1 and ρ is described in Section 2.4. Conclusion (16) appears in the

statement of the main result, [11, Theorem 1]. It follows from Propositions
10 and 13 that conclusion (15) holds for all y0 ∈ [0, τ ] for some τ > 0. In
Section 6 (see [11, Equation (6–17)]) it is shown that (15) may be extended
to all y0 ∈ (−T1, T

1). Estimate (2) has already been recalled in Theorem A.
Finally, (17) is not explicitly stated in [11], but it is a standard consequence of
assumptions about the initial data (with uε(0, x) = − 1 and ∂tuε(0, x) = 0 for
|x| outside some large ball) and finite propagation speed for the wave equation.

For a function vε : I → R we will use the notation

θ1(vε) :=
∫

I

(1 + z2)
(

ε

2
v′

ε(z)2 +
1
2ε

(v2
ε − 1)2

)
dz − c0 (18)

θ2(vε) :=
∫

I

|z| |vε(z) − sign(z)|2dz. (19)

Our goal is to show that the estimates in Proposition 1 in fact imply the
H1

ε estimate stated in Theorem 1. In doing this we use from the following fact:

Lemma 2. There exist positive constants c1, c2 (depending on ρ only) such that

if θ2(vε) ≤ c2, then
∫

I

ε

2
v′2

ε (z) +
1
2ε

(v2
ε − 1)2dz − c0 ≥ Ce−c/ε. (20)

Moreover, if in addition θ1(vε) ≤ c1, then∫
I

(√
εv′

ε − f1(vε)√
ε

)2

dz ≤ C

[∫
I

ε

2
v′2

ε (z) +
1
2ε

(v2
ε − 1)2dz − c0

]
+ Ce−c/ε

≤ Cθ1(vε) + Ce−c/ε, (21)

where f1(vε) = 1 − v2
ε .

This follows directly from Lemma 5.3 in [10].

2. A canonical decomposition

The main result of this section is the following:

4 We note that there are some cosmetic differences between [11] and Proposition 1. For
example, in [11] it is assumed for notational simplicity that T∗ = T ∗ and Tj = T j for
j = 0, 1. The proofs however make no use of this assumption and remain valid as stated
here.
5 In fact one can take any T1 such that T0 < T1 < T∗, and similarly T 1, and then arrange
that all the required properties hold by choosing ρ sufficiently small.
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Proposition 2. There exists δ > 0 such that if inf |σ|≤ρ/6 ‖vε − τσQε‖L2(R) ≤
δ
√

ε then there is a unique s∗ ∈ R such that

‖vε − τs∗Qε‖L2(I) = min
σ∈R

‖vε − τσQε‖L2(I).

Moreover, ∫
I

(vε − τs∗Qε) · τs∗Q′
ε = 0. (22)

Results in this spirit are in some sense standard, but for the convenience
of the reader we give a quick proof.

Proof. Let

ϕ(σ) := ‖vε − τσQε‖L2(I), η(σ) :=
1
2
‖vε − τσQε‖2

L2(I).

The continuity of translation in Lp spaces implies that ϕ and η are continuous.
In addition, for any σ ∈ R, the triangle inequality implies that

‖τσQε − τsQε‖L2(I) − ϕ(s) ≤ ϕ(σ) ≤ ‖τσQε − τsQε‖L2(I) + ϕ(s) (23)

Define f(t) := ‖τtq − q‖2
L2(R). Recalling that Qε(z) = sign(z) for |z| ≥ 2

3ρ, and
using (11) and a change of variables,

‖τσQε − τsQε‖L2(I) = ‖τσ−sQε − Qε‖L2(R) =
(

εf(
|σ − s|

ε
)
)1/2

+ O(e−c/ε)

if |s|, |σ| ≤ ρ
3 . Also, it is straightforward to check that f is smooth, with

f(0) = f ′(0) = 0 and f ′′(0) := 2a > 0 (in fact a =
∫
R

q′2 = 4/3.) It follows
that there exists a positive number δ1 such that

a

2
√

ε
|s − σ| ≤ ‖τσQε − τsQε‖L2(I) + O(e−c/ε) ≤ 2a√

ε
|s − σ| (24)

if |s|, |σ| ≤ ρ
3 and |s − σ| < δ1ε. Also, since σ �→ ‖τσQε − τsQε‖L2(I) is

nondecreasing in |s − σ|,

‖τσQε − τsQε‖L2(I) ≥ δ1a

3
√

ε if |s| ≤ ρ

3
and |s − σ| ≥ δ1ε. (25)

By hypothesis, there exists some s1 such that ϕ(s1) < δ
√

ε and |s1| ≤ ρ/6.
Then (23) and (25) imply that for any σ ∈ R

ϕ(σ) ≥ δ1a

3
√

ε − δ
√

ε ≥ δ
√

ε > inf ϕ if |σ − s1| ≥ δ1ε, (26)

as long as δ < δ1a
6 . It follows that min ϕ is attained at some s∗, and that

|s∗ − s1| < δ1
√

ε.
Also, one can easily check using the dominated convergence theorem that

if |σ| < 1
3ρ [and thus Qε(z) = sign(z) in a neighborhood of the endpoints of I,

see (10)] then

η′(σ) =
∫

I

(vε − τσQε) · τσQ′
ε.

Thus Eq. (22) follows directly from the optimality of s∗.
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It remains to prove the uniqueness of the minimizer s∗. Let σ be any
minimizer of ϕ. Arguing as in (26), we find that |s∗ − σ| < δ1ε. Repeating the
same argument, but now using (24) in place of (25), we find that |s∗ − σ| <
4εδ/a

To complete the proof, it therefore suffices to show that if δ is small
enough, then η is strictly convex in the interval (s∗ − 4εδ/a, s∗ + 4εδ/a), and
hence in this interval can only attain its minimum at a single point, necessarily
s∗.

To check convexity, we use the dominated convergence theorem as above
to compute

η′′(σ) =
∫

I

(τσQ′
ε)

2 −
∫

I

(vε − τσQε)τσQ′′
ε .

Using (11), we check that if ε is small enough, then for |σ| < 1
3ρ,

‖τσQ′
ε‖2

L2(I) ≥ c0

2ε
, ‖τσQ′′

ε‖L2(I) ≤ C

ε3/2
.

In addition, if |σ − s∗| ≤ 4εδ/a < δ1ε, then we know from (23) and (24) that
ϕ(σ) ≤ 9δ

√
ε, and thus

η′′(σ) ≥ c0

ε
− ‖vε − τσQε‖L2(I) ‖τσQ′′

ε‖L2(I) ≥ c0

ε
− C

δ

ε
.

The right-hand side can be made positive by decreasing δ, if necessary. This
proves convexity of η when |·−s∗| ≤ 4δε/a and hence completes the uniqueness
proof. �

3. Coercivity of θ1

The main result of this section shows that under suitable hypotheses, θ1(vε)
controls the H1

ε norm of vε and the size of the optimal translation s∗.

Proposition 3. There exist positive constants c1, c2, c3 such that 0 < c3 < 1,
and for every θ ∈ H1(I), if either

θ1(vε) ≤ c1 and θ2(vε) ≤ c2 (27)

or
inf

|s|≤c3ρ
‖vε − τsQε‖L2(I) < c3

√
ε , (28)

then for all sufficiently small ε, then there is a unique minimizer s∗ of ϕ(s) :=
‖vε − τsQε‖L2(I), and

s2
∗ � ε2 + θ1(vε) (29)

‖vε − τs∗Qε‖2
H1

ε (I) � θ1(vε) + e−c/ε. (30)

Estimates in the spirit of (30) are known, but we do not know a source
where they are proved under the hypotheses that we impose here, so we give
a self-contained proof.

The rest of this section is devoted to the
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Proof of Proposition 3. We will first prove the proposition under the assump-
tion (27), for constants c1, c2 to be fixed below. At the end of the proof, we
will consider assumption (28).

First, we define hε : (− ρ, ρ) → R by

v′
ε − 1

ε
f1(vε) =: hε. (31)

Then it follows from (21) that∫ ρ

−ρ

εh2
ε dz � θ1(vε) + Ce−c/ε � c1 (32)

for ε small.
It is convenient to extend h to the entire real line, by setting hε = 0

outside of (− ρ, ρ), and to extend vε by requiring that the ODE (31) holds
on the entire real line. This will allow us to translate vε without worrying
about redefining its domain. We continue to use the notation vε and hε for the
extended functions.

It is straightforward to check that if c2 is small enough (depending on ρ),
then since vε ∈ H1(I) ⊂ C(I), the hypothesis θ2(vε) ≤ c2 implies that

vε(s0) = 0 for some |s0| ≤ ρ/2. (33)

We will prove that

‖wε‖2
H1

ε (R) ≤ Cε‖hε‖2
L2(R), for wε := vε − τsqε. (34)

We will see that (30) is easily deduced from this.
Note that wε = vε − τs0qε vanishes at s0 and recall that τs0qε satisfies

(τs0qε)′ − 1
ε
f1(τs0qε) = 0.

By subtracting the latter equation from (31), which is satisfied by vε, we get

w′
ε =

1
ε
f1(vε) + hε − 1

ε
f1(τs0qε) =

1
ε
((τs0qε)2 − v2

ε) + hε

=
1
ε
(−wε)(τs0qε + vε) + hε.

Thus, wε satisfies the ordinary differential equation⎧⎨
⎩w′

ε =
1
ε
(−w2

ε − 2wε τsqε) + hε on R,

wε(s0) = 0.
(35)

We write the above problem in a more convenient form via an appropriate
rescaling of the functions. Namely,

w(z) := wε(ε(z − s0)) and h(z) := εhε(ε(z − s0)).

Then we have {
w′ = − (2q + w)w + h on R

w(0) = 0. (36)

Moreover, it follows from (32) that, if ε is small, then

‖h‖2
L2(R) = ε‖hε‖2

L2(R) � θ1(v) + Ce−c/ε � c1. (37)
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Since ‖wε‖H1
ε (R) = ‖w‖H1(R), it now suffices to estimate the latter quantity.

To do this, we will show via the contraction mapping principle that if c1

is small then (36) admits a unique solution which satisfies

‖w‖2
H1(R) ≤ C‖h‖2

L2(R), (38)

which is the same as (34), after rescaling.
We set

∀α > 0, Bα :=
{
w ∈ H1(R), such that ‖w‖H1(R) ≤ α

}
. (39)

In order to use the contraction mapping principle on Bα, we define the follow-
ing operator S:

Definition 1. Given w0 ∈ Bα, we define S(w0) := w1 to be the solution of{
w′

1 = − (2q + w0)w1 + h on R,
w1(0) = 0. (40)

We prove the following result:

Lemma 3. Let S be the operator defined in (40) above. There exists a constant
C such that

if ‖w0‖H1 ≤
√

2, then ‖Sw0‖H1 ≤ C‖h‖L2 .

Proof of Lemma 3. For each s, we set

Φ(s) :=
∫ s

0

(2q(t) + w0(t)) dt.

Then we have the explicit formula

w1(s) = e−Φ(s)

(∫ s

0

eΦ(t)h(t) dt

)

which leads us to write

S(w0)(s) = w1(s) =
∫ s

0

exp
(

−
∫ s

t

(2q(τ) + w0(τ)) dτ

)
h(t) dt. (41)

To prove our claim about the map S, we use first the 1-dimensional Sobolev
embedding (with sharp constant 1

2 ) to note that

‖w0‖2
L∞ ≤ 1

2
‖w0‖2

H1 ≤ 1 (42)

if ‖w0‖H1 ≤ √
2, which we henceforth assume to hold. Thus 2q + w0 ≥ 2q − 1,

or

− (2q + w0) ≤ − 2q + 1.

Thus for s ≥ 0,

|S(w0)(s)| ≤
∫ s

0

exp
(∫ s

t

(− 2q(τ) + 1) dτ

)
|h(t)| dt. (43)
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Using the explicit form of q, we can integrate to find that for any s ≥ 0,

|Sw0(s)| ≤
∫ s

0

exp
(

2 ln
(

cosh t

cosh s

)
+ (s − t)

)
|h(t)| dt

=
∫ s

0

(
cosh t

cosh s

)2

es−t|h(t)| dt (44)

Since 1
2ea ≤ cosh a ≤ ea for a > 0, it follows that

Sw0(s) ≤ 4
∫ s

0

e2(t−s)es−t|h(t)| dt

= 4E ∗ H(s)

for s > 0, where

E(s) :=

{
e−s if s > 0
0 if s ≤ 0

, H(s) :=

{
|h(s)| if s > 0
0 if s ≤ 0.

Then it follows from Young’s inequality that for any p ≥ 2,

1
4
‖1s>0 Sw0‖Lp ≤ ‖E‖Lq ‖H‖L2 = ‖h1s>0‖L2 ,

1
q

=
1
p

+
1
2
.

Since the same arguments (with some changes of sign) apply to 1s<0 Sw0,
it follows that for any p ≥ 2,

‖Sw‖Lp ≤ 4‖h‖L2 for all w ∈ Bα (45)

as long as α is sufficiently small (α ≤ √
2). Lastly, we note that the definition

of S in (40), together with (45) and the Sobolev embedding, leads to

‖(Sw)′‖L2 ≤ (2 + ‖w‖∞)‖Sw‖L2 + ‖h‖L2

≤ (2 + Cα)C‖h‖L2 + ‖h‖L2 ≤ C‖h‖L2 . (46)

The estimates (45) and (46) finish the proof of Lemma 3. �

Remark 1. The Sobolev embedding with sharp constant 1/2, which we used in
the proof of Lemma 3 above, allows us to see how small the radius α of the H1

ball Bα could be—independently of any parameters (α ≤ √
2).

Corollary 1. There exists a constant C > 0 such that for any α ∈ (0,
√

2],

if ‖h‖L2(R) < C−1α and 0 < α ≤
√

2,

then S(Bα) ⊆ Bα. That is, the H1-ball Bα is stable under S.

Proof. Let w ∈ Bα with α ≤ √
2. Then Lemma 3 implies that there ex-

ists a constant C such that ‖S(w)‖H1(R) ≤ C‖h‖L2(R). Thus S(w) ∈ Bα if
‖h‖L2(R) < C−1α (with the same constant C. �

We next prove that if ‖h‖L2 is sufficiently small, then there exists some
α > 0 such that S is a contraction mapping on Bα.
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Lemma 4. Let S be the operator defined in (40) above. Then there exist con-
stants C,α0 > 0 such that

if ‖h‖L2 ≤ α0

then the map S is a contraction mapping of Bα to itself, for α = C‖h‖L2 .
Hence, if ‖h‖L2 ≤ α0, then the unique solution w of the initial value

problem (36) satisfies (38).

Proof. Assume that ‖h‖L2 < α0 (to be adjusted below) and set α = C‖h‖L2 ,
for the same C as in Corollary 1. We require α0 to be small enough that
α ≤ √

2; then Corollary 1 applies, and it guarantees that S(Bα) ⊂ Bα.
Let w, ŵ ∈ Bα and set Sw = w1, Sŵ = ŵ1 and v := w1 − ŵ1. The main

point in the proof of this lemma is to get estimates on ‖v′‖L2(R) in terms of
‖w − ŵ‖H1(R). We write (40) for w and ŵ, and get

(w1 − ŵ1)′ = − (2q + w)w1 + (2q + ŵ)ŵ1

= − (2q + ŵ)(w1 − ŵ1) + w1(ŵ − w).

That is,

v′ = − (2q + ŵ)v + (ŵ − w)w1. (47)

Since w1(0) = ŵ1(0) = 0, it follows that v solves (40) with w0 replaced by ŵ

and h replaced by w1(ŵ − w). By assumption, ‖ŵ‖H1 < α ≤ √
2, so we may

use Lemma 3 to conclude that

‖v‖H1 ≤ C‖(ŵ − w)w1‖L2

≤ C‖w − ŵ‖L2‖ŵ1‖H1 (using the embedding H1 ↪→ L∞),
≤ Cα0‖w − ŵ‖H1 (since ŵ1 =Sŵ∈Bα and α=C‖h‖L2 ≤ Cα0).

For this choice of α0, if ‖h‖L2 < α0, there is a unique fixed point w of
S in Bα, and this clearly solves (36) and satisfies the estimate we are seeking,
i.e. ‖w‖H1 ≤ C‖h‖L2 . On the other hand, the initial value problem (36) has a
unique solution as long as that solution remains bounded. It follows that this
solution agrees with the fixed point w of S. Consequently, the solution w of
(36) satisfies (38).

Thus S : Bα → Bα is a contraction mapping if (in addition to the
smallness condition imposed above) α0 is small enough that Cα0 < 1. �

We break the remainder of the proof of Proposition 3 into several small
pieces.

Proof that (27) implies (30). Assume that (27) holds, for c1, c2 > 0 no greater
than the constants of the same name in Lemma 2, and such that c2 implies
(33). In addition, in view of (37), we can fix ε0 > 0 such that, after taking c1

smaller if necessary, we have ‖h‖L2 ≤ α0 whenever θ1(vε) ≤ c1 and 0 < ε < ε0.
It then follows from Lemma 4 that (38) holds, and hence (34).

Now let s∗ minimize ‖vε − τsQε‖L2(I). (It is clear that the minimum is
attained, since τsQε(z) = − sign(z) for all z ∈ I whenever |s| ≥ 2ρ.) Let
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Wε := vε − τs∗qε. Then from the optimality of s∗, because Qε and qε are
exponentially close, and using (34), we have

1
ε
‖Wε‖2

L2(I) ≤ 1
ε
‖vε − τs0qε‖2

L2(I) + Ce−c/ε =
1
ε
‖wε‖2

L2 + Ce−c/ε

� θ1(vε) + Ce−c/ε. (48)

Also, exactly as in the argument leading to (35), Wε satisfies

W ′
ε = − 1

ε
(2τs∗qε + Wε)Wε + hε (49)

for the same hε defined in (31) (but without the initial condition in (35).) Note
that

‖Wε‖L∞(I) = ‖wε + τs0qε − τs∗qε‖L∞(I) ≤ ‖wε‖L∞(I) + 2 ≤ α + 2.

We thus see from (48), (49), and (32) that
√

ε‖W ′
ε‖L2(I) ≤ 1√

ε
(α + 4)‖Wε‖L2(I)+

√
ε‖hε‖L2(I) ≤ C

(
θ1(vε) + Ce−c/ε)1/2.

By combining this with (48) and recalling (11) that qε and Qε are exponentially
close, we conclude that (30) holds. �

Proof that (28) implies (30). Now assume (28) instead of (27). We fix c3 such
that (28) implies that θ2(vε) ≤ c2 for all sufficiently small ε > 0. It is easy to
check that this can be done.

With this choice, we may assume that θ1(vε) ≥ c1, as otherwise conclusion
(30) is already known to hold, by our arguments above.

We define s∗ as above. It follows directly from (28) that

1
ε
‖vε − τs∗Qε‖2

L2(I) ≤ c2
3.

Then

‖vε − τs∗Qε‖2
H1

ε (I) =
1
ε
‖vε − τs∗Qε‖2

L2(I) + ε‖(vε − τs∗Qε)′‖2
L2(I)

≤ c2
3 + 2ε‖v′

ε‖2
L2(I) + 2ε‖Q′

ε‖2
L2(R).

Since θ1(vε) ≥ c1, and since c1, c3 are fixed, it is clear that

c3 = (
c3

c1
)c1 ≤ Cθ1(vε), ε‖Q′

ε‖2
L2(R) = c0 + Ce−c/ε ≤ Cc1 ≤ Cθ1(vε)

for C independent of ε, as long as ε is small. Moreover,∫ ρ

ρ

εv′2
ε ≤ 2

(∫ ρ

−ρ

ε

2
v′2

ε +
1
2ε

(v2
ε − 1)2dz − c0

)
+ 2c0

≤ 2θ1(vε) + 2c0

≤ Cθ1(vε).

again using the fact that c0 ≤ Cc1 ≤ Cθ1(vε). We obtain (30) by combining
these inequalities. �
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Proof of (29). We now prove that s2
∗ � ε2 + θ1(v), if s∗ minimizes ‖vε −

τsQε‖L2(I). For this, it is convenient to write Qs∗
ε := τs∗Qε and Wε := vε−Qs∗

ε .
If θj(v) ≤ cj for j = 1, 2, then it follows from (20) that

θ1(vε) ≥
∫ ρ

−ρ

z2

(
ε

2
v′

ε
2 +

1
2ε

(v2
ε − 1)2

)
dz

=
∫ ρ

−ρ

z2

(
ε

2
(Qs∗

ε + Wε)′ 2 +
1
2ε

((Qs∗
ε + Wε)2 − 1)2

)
dz.

Discarding a positive term and using the inequality (a + b)2 ≥ 1
2a2 − b2, we

conclude that

θ1(v) ≥
∫ ρ

−ρ

ε

4
z2(Qs∗

ε )′2 dz −
∫ ρ

−ρ

ε

2
W ′2

ε dz,

or upon rearranging and using (30),∫ ρ

−ρ

ε

4
z2(Qs∗

ε )′2 dz � θ1(v).

Since ∫ ρ

−ρ

ε

4
z2(Qs∗

ε )′2 dz ≥
(

min
|z−s|≤ε

z2

)∫ s+ε

s∗−ε

ε

4
(Qs∗

ε )′2 dz

� min
|z−s∗|≤ε

z2 ≥ 1
2
s2

∗ − ε2

we conclude that s2
∗ � ε2 + θ1(v). �

Proof of the uniqueness of s∗. Finally, by taking c1, c3 smaller if necessary, we
can arrange [in view of (30) and (29)] that either (27) or (28) implies the
hypothesis of Proposition 2, which is that inf |σ|≤ρ/6 ‖vε − τσQε‖L2(R) ≤ δ

√
ε.

The uniqueness of s∗ then follows.
This completes the proof of Proposition 3. �

4. Proof of Theorem 1

In this section we use Proposition 3 and the results from [10,11] recalled in
Sect. 1.3 to complete the proof of our main result.

We assume that Γ, T0, T
0 are given, and that uε is the solution of (1)

described in Proposition 1. We fix ρ, T1, T
1 as in Proposition 1, and we recall

that vε := uε ◦ Ψ−1 : (−T1, T1) × S
1 × I → R.

Lemma 5. If ε is sufficiently small, then for every (y0, y1) ∈ (−T1, T1) × S
1,

inf
|s|≤c3ρ

‖vε(y0, y1, ·) − τsQε‖L2(I) � ε3/4. (50)

As a result, inf |s|≤c3ρ ‖vε(y0, y1, ·) − τsQε‖L2(I) ≤ c3
√

ε, where c3 is the con-
stant in the hypothesis (28) of Proposition 3.

This lemma is the only point where we need the assumption that n = 2;
our argument relies on a 1d Sobolev embedding H1 ↪→ C1/2 in the tangential
variable y1.
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Proof. For y0 ∈ (−T1, T
1), we define

G(y0) := {y1 ∈ S
1 : θj(vε(y0, y1, ·)) ≤ ε3/2 for j = 1, 2},

If y1 ∈ G(y0), then vε(y0, y1, ·) satisfies the hypothesis (27) of Proposition 3,
and as a result, s∗(y0, y1) � ε3/4 and

‖vε(y0, y1, ·) − τs∗(y0,y1)Qε‖H1
ε (I) � θ1(vε(y0, y1, ·)) + Ce−c/ε � ε3/2. (51)

In particular, (50) holds. So we only need to show that (50) still holds for
(y0, y1) if y1 ∈ B(y0) := S

1\G(y0).
Toward this end, first note that for j = 1, 2,

Θj(y0) =
∫
S1

θj(vε(y0, y1, ·))dy1. (52)

This is a direct consequence of the definitions (see Sect. 1.3). We also know
from Proposition 1 that Θj(y0) ≤ Cε2 for j = 1, 2 and for all y0 ∈ (−T1, T

1).
It therefore follows via Chebyshev’s inequality that

|B(y0)| ≤ Cε1/2 for all y0 ∈ (−T1, T
1). (53)

We now fix (y0, y
b
1) such that yb

1 ∈ B(y0). In view of (53), we can find
some yg

1 ∈ G(y0) such that |yb
1 − yg

1 | ≤ Cε1/2. Let us write sg
∗ := s∗(y0, y

g
1).

Then using (51) and the triangle inequality,

‖vε(y0, y
b
1, ·) − τsg

∗Qε‖L2(I) ≤ ‖vε(y0, y
b
1, ·) − vε(y0, y

g
1 , ·)‖L2(I) + Cε5/2. (54)

Next, we use the Fundamental Theorem of Calculus and the Cauchy–Schwarz
inequality to compute

|v(y0, y
g
1 , y2) − v(y0, y

b
1, y2)|2 =

∣∣∣∣∣
∫ yb

1

yg
1

∂v

∂y1
(y0, r, y2) dr

∣∣∣∣∣
2

≤ ∣∣yg
1 − yb

1

∣∣ ∫ yb
1

yg
1

∣∣∣∣ ∂v

∂y1
(y0, r, y2)

∣∣∣∣
2

dr.

We integrate over y2 and use (15) to find that

‖v(y0, y
g
1 , ·) − v(y0, y

b
1, ·)‖2

L2 � ε1/2 Θ3(y0)
ε

� ε3/2.

Since |sg
∗| � ε3/4, this fact and (54) together imply that (y0, y1) satisfy (50). �

We will also need the following Sobolev–Poincaré inequality.

Lemma 6. Assume that Ω is a bounded, connected open set in R
n with Lipschitz

boundary. Then there exists a constant C = C(Ω) such that if u ∈ BV (Ω) is
a function such that

Ln(supp(u)) ≤ 1
2
Ln(Ω).

then ∫
Ω

|u| n
n−1 dx ≤ C

(∫
Ω

|Du|dx

) n
n−1

(55)
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Proof. This is proved in for example in [1, Theorem 3.51]. The proof there
assumes that Ω is a ball, but the argument only requires that the relative
isoperimetric inequality hold on Ω, i.e. that there exist some C = C(Ω) such
that (Ln(E))

n−1
n ≤ C PerΩ(E) for every E ⊂ Ω of finite perimeter such that

Ln(E) ≤ 1
2Ln(Ω). This is known to hold for bounded connected Lipschitz

domains, see for example [9, 4.5.2] so the proof of (55) in [1] applies here. �

Proof of Theorem 1. We must estimate the H1
ε norm of uε − Uε. We will con-

sider separately the region N ′ near Γ, where we can use normal coordinates,
and its complement M. �

1. Estimates in normal coordinates near. Γ. Recall that Vε(y0, y1, y2) =
τs∗(y0,y1)Qε(y2) = Uε ◦ Ψ. We will first prove that∫

S1×I

1
ε
(vε − Vε)2 +

2∑
i=0

ε[∂yi
(vε − Vε)]2dy1dy2 � ε2 for all y0 ∈ (−T1, T

1).

(56)
To start, using Lemma 5 implies that hypothesis (28) of Proposition 3 is sat-
isfied for every (y0, y1) ∈ (−T1, T

1) × S
1. The proposition then yields∫

I

1
ε
(vε(y0, y1, y2) − Vε(y0, y1, y2))2dy2

+ ε

∫
I

(
(∂y2(vε(y0, y1, y2) − Vε(y0, y1, y2))

)2

dy2 � θ1(vε(y0, y1, ·)) + Ce−c/ε

for every (y0, y1). Integrating over S
1 and using (52) and (15), we find that∫

S1×I

1
ε
(vε − Vε)2 + ε(∂y2(vε − Vε))2 dy2 dy1 ≤ Cε2

for every y0 ∈ (−T1, T
1). It also follows from (15) that∫

S1×I

ε(∂y0vε)2 + ε(∂y1vε)2 dy2 dy1 ≤ Cε2 (57)

for every y0 as above. Thus, to complete the proof of (56), it suffices to show
that Vε satisfies an estimate similar to (57). For this, we compute

∂yj
Vε = −(τs∗Q′

ε) ∂yj
s∗ for j = 0, 1. (58)

Also, writing Wε := vε − Vε and differentiating,

(τs∗Q′
ε) ∂yj

s∗ = ∂yj
Wε − ∂yj

vε. (59)

We want to multiply both sides of this identity by ∂yj
Vε = − (τs∗Q′

ε) ∂yj
s∗

and integrate. In order to simplify the term involving ∂yj
Wε, we recall from

Proposition 2 that∫
I

Wε(y0, y1, y2)Q′
ε(y2 − s∗(y0, y1)) dy2 = 0 for all (y0, y1).

Differentiating with respect to yj for j = 0, 1 yields∫
I

(∂yj
Wε)(τs∗Q′

ε) dy2 =
∫

I

Wε (τs∗Q′′
ε )(∂yj

s∗) dy2 for all (y0, y1).



 15 Page 18 of 21 M. El Smaily and R. L. Jerrard NoDEA

Since s∗ is independent of y2, it follows that∫
I

(∂yj
Wε)(τs∗Q′

ε)(∂yj
s∗) dy2 ≤ (∂yj

s∗)2‖Wε‖L2(I)‖τs∗Q′′
ε‖L2(I)

(50)

� (∂yj
s∗)2ε3/4ε−3/2 = ε−3/4(∂yj

s∗)2

for all (y0, y1).
If we multiply (59) by (τs∗Q′

ε)∂yj
s∗ and integrate first with respect to y2,

then with respect to y1, we therefore deduce that∫
S1

(∂yj
s∗)2

∫
I

(τs∗Q′
ε)

2dy2 dy1 � ε−3/4

∫
S1

(∂yj
s∗)2dy1 +

∫
S1×I

∂yj
v2

ε dy2 dy1,

(60)
where we have used the elementary estimate∫

S1×I

(∂yj
vε)(∂yj

s∗)(τs∗Q′
ε) dy2 dy1

≤ 1
2

∫
S1×I

(∂yj
v2

ε) + (∂yj
s∗)2(τs∗Q′

ε)
2 dy2 dy1,

In addition,∫
I

(τs∗Q′
ε)

2dy2 =
c0

ε
+ O(e−c/ε) ≥ c0

2ε
for every (y0, y1)

for ε small enough. Thus the first term on the right-hand side of (60) can be
absorbed by the left-hand side , and we can finally conclude that∫

S1
(∂yj

s∗)2dy1 � ε

∫
S1×I

(∂yj
vε)2 � ε2 for all y0 ∈ (−T1, T

1).

With this, we readily deduce from (58) that ‖∂yj
Vε‖2

L2(S1×I) ≤ Cε for j = 0, 1,
completing the proof of (56).

Also, for every y0, we know from (29) that∫
S1

s2
∗(y0, y1)dy1 �

∫
S1

(ε2 + θ1(vε(y0, y1, ·))dy1 � ε2 + Θ1(y0) � ε2,

so we have proved that ‖s∗(y0, ·)‖H1(S1) ≤ Cε for every y0, which is (14).
2. Estimates in (t, x) coordinates near Γ. Since (uε − Uε) = (vε − Vε) ◦ Ψ−1,
and because Ψ is a diffeomorphism from (−T1, T

1) × S
1 × I onto its image,

which contains N ′, a simple change of variables shows that (56) implies that

‖uε − Uε‖H1
ε (N ′) ≤ Cε.

3. Estimates in (t, x) coordinates away Γ. To finish the proof, we must estimate
‖uε − Uε‖H1

ε (M).
Note that M consists of two components, M∩O and M\O, with Uε = 1

in the former and Uε = − 1 in the latter. (Recall that O is the region enclosed
by Γ.)
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We already know from Proposition 1 that ‖Duε‖2
L2(M) ≤ Cε, and since

Duε = D(uε − Uε) in M, it only remains to prove that∫
M∩O

(uε − 1)2 +
∫

M\O
(uε + 1)2 ≤ Cε3. (61)

As we will see, these are straightforward consequences of results from [11]. We
first consider M ∩ O.

We will write

H(s) :=
(

1
3
s3 − s

)+

=

{
|s − 1

3s3| if − √
3 ≤ s ≤ 0,

0 otherwise.

It is easy to see that

(uε − 1)2 � (u2
ε − 1)2 + H(uε)3/2.

We already know from (16) that
∫

M∩O(u2
ε − 1)2 dx dt � ε3, so to prove (61),

it suffices to show that ∫
M∩O

H(uε)3/2dx dt � ε3.

In doing so, we will use the fact (which motivates the definition of H) that

|DH(uε)| ≤ |u2
ε − 1| |Duε| ≤ ε

2
|Duε|2 +

1
2ε

(u2
ε − 1)2.

As a result ∫
M∩O

|DH(uε)| dx dt � ε2

by Proposition 1. Therefore, to complete the proof of (61), it is enough to note
that ∫

M∩O
|H(uε)|3/2 dx dt �

(∫
M∩O

|DH(uε)| dx dt

)3/2

� ε3.

But this follows from the Sobolev–Poincaré estimate in Lemma 6. The estimate
is applicable here since (2) implies that {(t, x) ∈ M ∩ O : uε(t, x) < 0}
has measure at most Cε1/2 ≤ Ln(Ω) for ε small. The same thus holds for
{(t, x) ∈ M ∩ O : H(uε)(t, x) �= 0}, and this is the hypothesis for Lemma 6.

The argument for M\O is almost identical. The only point to notice is
that, since uε = signO on −T∗, T ∗) × (R2\B(R)) see (17), it suffices to show
that ∫

(t,x)∈M\O:|x|<R

(uε + 1)2 ≤ Cε3.

Since the domain of integration here is a bounded connected Lipschitz set
whenever R is large enough, Lemma 6 applies, and we may now argue exactly
as above. �
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