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Abstract. In this paper, we consider a Leslie-Gower predator-prey model
in one-dimensional environment. We study the asymptotic behavior of two
species evolving in a domain with a free boundary. Su�cient conditions for
spreading success and spreading failure are obtained. We also derive sharp
criteria for spreading and vanishing of the two species. Finally, when spreading
is successful, we show that the spreading speed is between the minimal speed
of traveling wavefront solutions for the predator-prey model on the whole real
line (without a free boundary) and an elliptic problem that follows from the
original model.

1. Introduction. A variety of models are used to describe the predator-prey inter-
actions. The dynamical relationship between a predator and a prey has long been
among the dominant topics in mathematical ecology due to its universal existence
and importance. Recently, many works studied the predator-prey system with the
Leslie-Gower scheme [1, 3, 8, 9, 11, 17, 20]. A typical Leslie-Gower predator-prey
model is the following
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whereN and P denote the population densities of the prey and predator populations
respectively. The parameter r represents the intrinsic growth rate of the prey species
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and G stands for its carrying capacity. The parameter a is the growth rate for the
predator and b (resp. c) is the maximum value which per capita reduction rate
of N (resp. P ) can attain. G1 denotes the extent to which environment provides
protection to predator P . All parameters are assumed to be positive.

In order to get the spatiotemporal dynamics of system (1), the following reaction-
di↵usion equations are widely accepted
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and dropping the hat sign, (2) turns into the following system
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@u

@t
= uxx + u(1� u)� �u�, t, x 2 R,

@�

@t
= D�xx + �

✓
1� �

u+ ↵

◆
, t, x 2 R.

(3)

System (3) has at least three boundary equilibrium solutions E1 = (0, 0), E2 =
(0,↵), E3 = (1, 0). Moreover, if �↵ < 1, there exists a unique interior equilibrium
solution E⇤ = (u⇤, �⇤), where

�⇤ = ↵+ u⇤ and u⇤ =
1� �↵

1 + �
.

Our main objective is to understand the long time behavior of a Leslie-Gower
predator-prey model via a free boundary. In this paper, we consider the following
model:
8
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@u

@t
= uxx + u(1� u)� �u�, for all t > 0 and 0 < x < h(t),

@�

@t
= D�xx + �

✓
1� �

u+ ↵

◆
, for all t > 0 and 0 < x < h(t),

h0(t) = �µ(ux(t, h(t)) + ⇢�x(t, h(t))), for all t > 0,

h(0) = h0,

ux(t, 0) = �x(t, 0) = u(t, h(t)) = �(t, h(t)) = 0, for all t > 0,

u(0, x) = u0(x) and �(0, x) = �0(x), for all x 2 [0, h0],
(4)

with the positive parameters µ, ⇢ > 0. The initial data (u0, �0) satisfy
8
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>>:

u0, �0 2 C2([0, h0]),

u0
0(0) = �0

0(0) = u0(h0) = �0(h0) = 0,

h0 > 0, u0(x) > 0 and �0(x) > 0 for all x 2 [0, h0).

(5)
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From a biological point of view, model (4) describes how the two species evolve
if they initially occupy the bounded region [0, h0]. The homogeneous Neumann
boundary condition at x = 0 indicates that the left boundary is fixed, with the
population confined to move only to right of the boundary point x = 0. We assume
that both species have a tendency to emigrate throught the right boundary point
to obtain their new habitat: the free boundary x = h(t) represents the spreading
front. Moreover, it is assumed that the expanding speed of the free boundary is
proportional to the normalized population gradient at the free boundary. This is
well-known as the Stefan condition.

Many previous works study free boundary problems in predator-prey or compe-
tition models. We refer the reader, for instance, to [12, 14, 15, 18, 21] and references
cited therein.

In this paper, we have been working under the following assumption

(H1) : �↵+ � < 1.

Organization of the paper. In Section 2, we use a contraction mapping argument
to prove the local existence and uniqueness of the solution to (4), then make use of
suitable estimates on the solution to show that it exists for all time t > 0. In Section
3, we derive several lemmas which will be used later. Section 4 is devoted to the
long time behavior of (u, �), proving a spreading-vanishing dichotomy and finally
deriving criteria for spreading and vanishing. We estimate the spreading speed in
Section 5 and then summarize through a brief discussion in Section 7.

2. Existence and uniqueness of solutions. In this section, we first state a result
about the local existence and uniqueness of a solution to (4) in Lemma 2.1. Then
we derive a priori estimates (Lemma 2.2) in order justify that the solution is defined
for all time t > 0. The global existence of a solution to the system (4) is stated in
Theorem 2.3.

Lemma 2.1. Assume that (u0, �0) satisfies the condition (5), then for any ✓ 2
(0, 1), there is a T > 0 such that the problem (4) admits a unique solution

(u(t, x), �(t, x), h(t)), which satisfies

(u, �, h) 2 C
(1+✓)

2 ,1+✓(QT )⇥ C
(1+✓)

2 ,1+✓(QT )⇥ C1+ ✓
2 ([0, T ]).

where QT = {(t, x) 2 R2 : t 2 [0, T ], x 2 [0, h(t)]}.

The proof of Lemma 2.1 will be postponed to Section 6.

Lemma 2.2. Let (u, �, h(t)) be a solution of (4) for t 2 [0, T ] for some T > 0.
Then

0 < u(t, x)  max{1, ku0k1} := M1 for t 2 [0, T ] and x 2 [0, h(t)), (6)

0 < �(t, x)  max{M1 + ↵, k�0k1} := M2 for t 2 [0, T ] and x 2 [0, h(t)), (7)

0 < h0(t)  ⇤ for all t 2 (0, T ]. (8)

where ⇤ > 0 depends on µ, ⇢, D, , ku0k1, k�0k1, ku0kC[0,h0] and k�0kC[0,h0].

The proof of Lemma 2.2 will be postponed to Section 6 as well.

Theorem 2.3. Assume that (u0, �0) satisfies the condition (5), then for any ✓ 2
(0, 1), the problem (4) admits a unique solution (u(t, x), �(t, x), h(t)), which satisfies

(u, �, h) 2 C
(1+✓)

2 ,1+✓(Q)⇥ C
(1+✓)

2 ,1+✓(Q)⇥ C1+ ✓
2 ([0,+1)),
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where

Q = {(t, x) 2 R2 : t 2 [0,+1), x 2 [0, h(t)]}.

On the proof of Theorem 2.3. We only give a brief sketch of the proof here since it
is similar to those done in [5] and [6]: the global existence of the solution to problem
(4) follows from the uniqueness of the local solution, Zorn’s lemma and the uniform
estimates of u, � and h0(t) obtained in Lemma 2.2, above.

3. Known results from prior works. In this section, we recall from prior works
some important results that will be used repeatedly in our arguments. We start
with some results regarding the stationary state(s) of the model

8
<

:

@u

@t
= duxx + au(1� bu), (t, x) 2 (0,1)⇥ (0, L),

ux(t, 0) = u(t, L) = 0, t > 0.

(9)

The stationary state will be determined via the eigenvalue problem
(

d�xx + a� = ��, 0 < x < L,

�x(0) = �(L) = 0
(10)

as well as the spatial domain’s size. The following lemma summarizes the result.

Lemma 3.1 ([2] and [22]). Let L⇤ =
⇡

2

r
d

a
and d⇤ =

4aL2

⇡2
. Then we have:

(i) if L  L⇤
, all positive solutions of (9) tend to zero in C([0, L]) as t ! +1.

(ii) If L > L⇤
, then (9) has a minimal positive equilibrium �, and all positive

solutions to (9) approach � in C([0, L]) as t ! +1.

(iii) If 0 < d < d⇤, the principal eigenvalue of (10) is positive (�1 > 0.) If d = d⇤

then �1 = 0, and if d > d⇤ then �1 < 0.

For a detailed proof of (i) and (ii) one can refer to Proposition 3.1 and 3.2 of [2].
The result in (iii) is obtained through a simple computation and can be found in
the proof of Corollary 3.1 in [22].

Now, we state a comparison principle that we will use in the proving the results
of Section 4, below. This comparison principle is extracted from Lemma 4.1 and
Lemma 4.2 of [13] with minor modifications.

Lemma 3.2. Let h̄ and h be two postive C1([0,+1)) functions (h̄, h > 0 in

[0,+1)). Denote by

⌦ =
�
(t, x) : t > 0, x 2 [0, h̄(t)]

 

and

⌦1 = {(t, x) : t > 0, x 2 [0, h(t)]}.

Let ū, �̄ 2 C(⌦̄) \ C1,2(⌦) and u, � 2 C(⌦̄1) \ C1,2(⌦1). Assume that

0 < ū, u  M1 and 0 < �̄, �  M2
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and that (ū, �̄, h̄) satisfies
8
>>>>>>>>><

>>>>>>>>>:

ūt � ūxx � ū(1� ū), t > 0, 0 < x < h̄(t),

�̄t �D�̄xx � �̄
⇣
1� �̄

M1+↵

⌘
, t > 0, 0 < x < h̄(t),

ūx(t, 0)  0, �̄x(t, 0)  0, t > 0,

ū(t, h̄(t)) = �̄(t, h̄(t)) = 0, t > 0,

h̄0(t) � �µ(ūx(t, h̄(t)) + ⇢�̄x(t, h̄(t))), t > 0,

(11)

and the couple (u, h) satisfies
8
>>>><

>>>>:

ut � uxx  u(1� �M2 � u), t > 0, 0 < x < h(t),
ux(t, 0) � 0, t > 0,

u(t, h(t)) = 0, t > 0,

h0(t)  �µux(t, h(t)), t > 0

(12)

and the couple (�, h) satisfies
8
>>>>><

>>>>>:

�t �D�xx  �(1� �
↵ ), t > 0 0 < x < h(t),

�x(t, 0) � 0, t > 0,

�(t, h(t)) = 0, t > 0,

h0(t)  �µ⇢�x(t, h(t)), t > 0.

(13)

Assume that the initial data of (11) satisfy

h̄(0) � h0, ū(0, x), �̄(0, x) � 0 on [0, h̄(0)]

and

ū(0, x) � u0(x) and �̄(0, x) � �0(x) on [0, h0],

and the initial data of (12) and (13) satisfy

h(0)  h0, 0 < u(0, x)  u0(x) and 0 < �(0, x)  �0(x) on [0, h(0)].

Then, the solution (u, �, h) of (4) satisfies

h(t)  h(t)  h̄(t) on [0,+1),

u  ū & �  �̄ for all t � 0 and 0  x  h(t),

and

u � u & � � � for all t � 0 and 0  x  h(t).

The proof of Lemma 3.2 is very similar to the proofs of Lemma 5.1 of [7], Lemma
4.1 and Lemma 4.2 of [13]. We hence omit the details here.

In order to discuss the spreading of the species, we will use Lemma A.2, Lemma
A.3 of [19] and Proposition 8.1 of [16]. We restate these results here for the reader’s
convenience.

Lemma 3.3. Let M � 0. For any given " > 0 and l" > 0, there exist

l > max

(
l",

⇡

2

r
d

a

)
such that, if the continuous and non-negative function U(t, x)
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satisfies (
Ut � dUxx � U(a� bU), t > 0, 0 < x < l,

Ux(t, 0) = 0, U(t, l) � M, t > 0,
(14)

and if U(0, x) > 0 in [0, l), then

lim inf
t!+1

U(t, x) >
a

b
� " uniformly on [0, l"].

Lemma 3.4. For any given " > 0 and l" > 0, there exists l > max

(
l",

⇡

2

r
d

a

)

such that , if the continuous and non-negative function V (t, x) satisfies
(

Vt � dVxx  V (a� bV ), t > 0, 0 < x < l,

Vx(t, 0) = 0, V (t, l) = 0, t > 0,
(15)

and if V (0, x) > 0 in [0, l), then

lim sup
t!+1

V (t, x) <
a

b
+ " uniformly on [0, l"].

On the contrary, we will use the following lemma, which is Proposition 3.1 of
[13], in order to discuss the vanishing case of the species.

Lemma 3.5 (Proposition 3.1 in [13]). Let d and s0 be positive constants and let

a 2 R. Assume that !0 2 C2([0, s0]) satisfies

!0
0(0) = 0, !0(s0) = 0 and !0(x) > 0 for all x 2 (0, s0).

Let s 2 C1+ ✓
2 ([0,+1)) and ! 2 C

1+✓
2 ,1+✓([0,1)⇥[0, s(t)]), for some ✓ > 0. Assume

that s(t) > 0 and !(t, x) > 0 for all 0  t < 1 and 0 < x < s(t). We further assume

that

lim
t!+1

s(t) = s1 < +1, lim
t!+1

s0(t) = 0 and k!(t, ·)kC1[0,s(t)]  fM for all t > 1,

for some constant fM > 0. If the functions ! and s satisfy
8
>>>>>><

>>>>>>:

!t � d!xx � !(a� !), t > 0 and 0 < x < s(t),

s0(t) � �µ!x(t, s(t)), t > 0,

s(0) = s0,
!x(t, 0) = 0, !(t, s(t)) = 0, t > 0,
!(0, x) = !0(x), x 2 [0, s0],

(16)

then

lim
t!+1

k !(t, ·) kC[0,s(t)]= 0.

To discuss the asymptotic behaviors of u and � in the vanishing case, we need
the following lemma.

Lemma 3.6. Let (u, �, h(t)) be the solution of (4) and recall that h1 = lim
t!+1

h(t).

If h1 < 1, then there exists M, for all t > 0, such that ku(t, ·)kC1[0,h(t)]  M and

k�(t, ·)kC1[0,h(t)]  M . Moreover, lim
t!+1

h0(t) = 0.

We skip the proof of the above lemma since it is similar to that of Theorem 4.1
in [16].

Furthermore, we need the following lemma which appears in [7] and [13] (page
893 and page 3388 respectively).
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Lemma 3.7. Consider the following problem

8
>><

>>:

@u

@t
= uxx + u(1� u), t > 0, x > 0,

@�

@t
= D�xx + �

✓
1� �

M1 + ↵

◆
, t > 0, x > 0.

(17)

Assume that u(t, x) = U(⇠) and �(t, x) = V (⇠), where ⇠ = x � st. Then (3.7) is

equivalent to

8
<

:

sU 0 + U 00 + U(1� U) = 0, ⇠ 2 R,

sV 0 +DV 00 + V
⇣
1� V

M1+↵

⌘
= 0, ⇠ 2 R,

(18)

If s � smin = 2max{1,
p
D}, then problem of (18) admits a solution (U, V ) which

satisfies the conditions

U(�1) = 1, V (�1) = M1 + ↵, U(+1) = V (+1) = 0,

U 0(⇠) < 0 and V 0(⇠) < 0 for all ⇠ 2 R.
(19)

The following lemma will be used to give a lower estimate of the “asymptotic
spreading speed” (when spreading occurs). The notion of spreading and spreading
speed will become more clear later on.

Before we state the needed lemma, let us first consider the following problem
(which is relevant to the original problem (4). It will also initiate problem (22), the
subject of Lemma 3.8.)

8
>>>>>><

>>>>>>:

@t� �D@xx� = �
⇣
1� �

↵

⌘
, t > 0, 0 < x < h(t),

@x�(t, 0) = 0, t > 0,

�(t, h(t)) = 0, t > 0,

h0(t) = �µ⇢ @x�(t, h(t)), t > 0.

(20)

We assume that (�, h) is the unique solution of (20) and h(t) ! +1 as t ! +1.
Setting

!(t, x) = �(t, h(t)� x),

we then obtain
8
>>>>>><

>>>>>>:

!t �D!xx + h0(t)!x = !(1� !

↵
), for all t > 0 and 0 < x < h(t),

!x(t, h(t)) = 0, t > 0,

!(t, 0) = 0, t > 0,

h0(t) = µ⇢!x(t, 0), t > 0.

(21)

Since lim
t!+1

h(t) = +1, if h0(t) approaches a constant s⇤ and !(t, x) approaches

a positive function V (x) as t ! +1, then V (x) must be a positive solution of (22)
with s⇤ = µ⇢V 0(0).

We now state the lemma.
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Lemma 3.8 (Proposition 4.1 in [5]). For any s � 0, the following problem

8
<

:
sV 0 �DV 00 � V

✓
1� V

↵

◆
= 0, x > 0,

V (0) = 0,
(22)

admits a unique positive solution V = Vs. Furthermore, for each µ, ⇢ > 0, there
exists a unique s⇤ such that µ⇢V 0

s⇤(0) = s⇤.

4. The spreading-vanishing dichotomy. We have seen in Lemma 2.2 that
h0(t) > 0 for all t > 0. This allows us to define

h1 := lim
t!+1

h(t) in [0,+1) [ {1}. (23)

This will allow us to define the notions of spreading and vanishing as follows.

Definition 4.1. We say that the two species u and � vanish eventually if h1 < 1
and

lim
t!+1

ku(t, ·)kC([0,h(t)]) = lim
t!+1

k�(t, ·)kC([0,h(t)]) = 0.

We say that the two species u and � spread successfully if

h1 = +1, lim inf
t!+1

u(t, x) > 0 and lim inf
t!+1

�(t, x) > 0

uniformly in any compact subset of [0,+1).

4.1. The spreading case. The following theorem shows that h1 = +1 is su�-
cient for a successful spreading:

Theorem 4.2. Suppose that (u, �, h(t)) is the solution of (4). If h1 = +1, then
we have

lim
t!+1

u(t, x) = u⇤
and lim

t!+1
�(t, x) = �⇤.

Proof. We will divide the proof of this theorem into two steps.

Step 1. Since h1 = +1, then for any l", there exists T1 > 0 and l1 > 0 such that

l1 > max
n
l",

⇡

2

o
, when t > T1, and then u satisfies

8
>><

>>:

ut � uxx  u(1� u), t > T1, 0 < x < l1,

ux(t, 0) = 0, u(t, l1)  M, t > T1,

u(T1, x) > 0, x 2 [0, l1),

(24)

where M = max{M1,M2} (the constants appearing in (6) and (7).) Applying
Lemma 3.4, we obtain that

lim sup
t!+1

u(t, x) < 1 + " uniformly in [0, l"].

Since " and l" are arbitrary, then lim sup
t!+1

u(t, x)  1 =: ū1 uniformly on [0,+1).

Now let l2 > max

(
l",

⇡

2

r
D



)
. In view of the last conclusion, there exists T2 >

T1 such that u(t, x) < ū1 + " when t > T2 and 0 < x < l2. Then � satisfies
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8
>>>><

>>>>:

�t �D�xx  �

✓
1� �

ū1 + "+ ↵

◆
, t > T2, 0 < x < l2,

�x(t, 0) = 0 and �(t, l2)  M, t > T2,

�(T2, x) > 0, x 2 [0, l2).

(25)

Applying Lemma 3.4 again, we get lim sup
t!+1

�(t, x) < ū1 + ↵+ " uniformly

on [0, l"]. The arbitrariness of " and l" allows us to conclude that
lim sup
t!+1

�(t, x)  ū1 + ↵ =: �̄1, uniformly on [0,+1).

Let l3 > max
n
l",

⇡

2

o
. From the above conclusion, we know that there exists

T3 > T2 such that �(t, x) < �̄1 + " and u(t, x) > 0 whenver t > T3 and 0 < x < l3.
Then u satisfies

8
>><

>>:

ut � uxx � u(1� u)� �u(�̄1 + "), t > T3, 0 < x < l3,

ux(t, 0) = 0, u(t, l3) = 0, t > T3,

u(T3, x) > 0, x 2 [0, l3).

(26)

By Lemma 3.3, we get lim inf
t!+1

u(t, x) > 1� ��̄1 � " uniformly on [0, l"]. Again us-

ing the arbitrariness of " and l", it follows that lim inf
t!+1

u(t, x) � 1� ��̄1 =: u1 > 0

because of the hypothesis (H1).

Let l4 > max

(
l",

⇡

2

r
D



)
. In view of above result, then there exists T4 > T3

such that u(t, x) > u1 � " whenever t > T4 and 0 < x < l4. Then � satisfies
8
>>>><

>>>>:

�t �D�xx � �

✓
1� �

u1 � "+ ↵

◆
, t > T4, 0 < x < l4,

�x(t, 0) = 0, �(t, l4) = 0, t > T4,

�(T4, x) > 0, x 2 [0, l4).

(27)

Applying Lemma 3.3, we have lim inf
t!+1

�(t, x) > u1 + ↵� " uniformly on [0, l"], and

consequently (as " and l" are arbitrary) we obtain lim inf
t!+1

�(t, x) � u1 + ↵ =: �1.

Now we will build a ū2.
Denote l5 > max

�
l",

⇡
2

 
. By above conclusion, we know that there exists T5 >

T4 such that �(t, x) > �1 � " when t > T5, 0 < x < l5, and then u satisfies:
8
>><

>>:

ut � uxx  u(1� u)� �u(�1 � "), t > T5, 0 < x < l5,

ux(t, 0) = 0, u(t, l5) = M, t > T5,

u(T5, x) > 0, x 2 [0, l5).

(28)

By Lemma 3.4, we have lim supt!+1 u(t, x) < 1���̄1�" uniformly on [0, l"]. Again
using the arbitrariness of " and l", it follows that lim inft!+1 u(t, x)  1� ��1 =:
ū2 > 0 uniformly on [0,+1).

The construction of �̄2.

Let l6 > max
n
l",

⇡
2

q
D


o
. In view of (28), there exists T6 > T5 such

that u(t, x) < ū2 + " when t > T6, 0 < x < l6, and then � such that
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8
>><

>>:

�t �D�xx  �(1� �
ū2+"+↵ ), t > T6, 0 < x < l6,

�x(t, 0) = 0, �(t, l6)  M, t > T6,

�(T6, x) > 0, x 2 [0, l6).

(29)

Applying Lemma 3.4, we have lim supt!+1 �(t, x) < ū2+↵+ " uniformly on [0, l"].
Considering the arbitrariness of " and l", we then have lim supt!+1 �(t, x)  ū2 +
↵ =: �̄2, uniformly on [0,+1).

Furthermore, let l7 > max
�
l",

⇡
2

 
. By above conclusion, we know that there

exists T7 > T6 such that �(t, x) < �̄2 + " and u(t, x) > 0 when t > T7, 0 < x < l7,
and then u satisfies:

8
>><

>>:

ut � uxx � u(1� u)� �u(�̄2 + "), t > T7, 0 < x < l7,

ux(t, 0) = 0, u(t, l7) = 0, t > T7,

u(T7, x) > 0, x 2 [0, l7).

(30)

By Lemma 3.3, we have lim inft!+1 u(t, x) > 1���̄2�" uniformly on [0, l"]. Again
using the arbitrariness of " and l", it follows that lim inft!+1 u(t, x) � 1���̄2 =: u2.

In order to sharpen the upper and lower bounds above, we continue to use the

above approach and find l8 > max
n
l",

⇡
2

q
D


o
. In view of above result, then there

exists T8 > T7 such that u(t, x) > u2 � ", when t > T8, 0 < x < l8, and then �
satisfies 8

>><

>>:

�t �D�xx � �(1� �
u2�"+↵ ), t > T8, 0 < x < l8,

�x(t, 0) = 0, �(t, l8) = 0, t > T8,

�(T8, x) > 0, x 2 [0, l8).

(31)

Applying Lemma 3.3, we have lim inft!+1 �(t, x) > u1 +↵� " uniformly on [0, l"],
because of the arbitrariness of " and l", it implies that lim inft!+1 �(t, x) � u2 +
↵ =: �2.

Step 2. Indeed, we can continue the above strategy to obtain the following se-
quences, whose monotonicity is a straightforward conclusion

u1  . . .  ui  . . .  lim inf
t!+1

u(t, x)  lim sup
t!+1

u(t, x)  . . .  ūi  . . .  ū1,

�1  . . .  �i  . . .  lim inf
t!+1

�(t, x)  lim sup
t!+1

�(t, x)  . . .  �̄i  . . .  �̄1,

where ui = 1� ��̄i, ūi = 1� ��i�1, �i = ui + ↵ and �̄i = ūi + ↵ for i = 1, 2, 3, · · · .

Since the constant sequences {ūi} and {�̄i} are monotone non-increasing and
bounded from below, and the sequences {ui} and {�i} are monotone non-decreasing,
and are bounded from above, the limits of these sequences exist. Let us denote their
limits, as i ! +1, by ū, �̄, u and � respectively. We then have

ū = 1� ��, u = 1� ��̄, �̄ = ū+ ↵ and � = u+ ↵.

Thus, 8
<

:

ū = 1� �(u+ ↵),

u = 1� �(ū+ ↵).
(32)
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From hypothesis (H1), we can easily conclude that ū = u = u⇤ and this implies
that

lim inf
t!+1

u(t, x) = lim sup
t!+1

u(t, x) = u⇤ and lim inf
t!+1

�(t, x) = lim sup
t!+1

�(t, x) = �⇤.

The proof of Theorem 4.2 is now complete.

4.2. The vanishing case. The following theorem shows that the finiteness of h1
leads both species, u and �, to vanish.

Theorem 4.3. Let (u, �, h(t)) be the solution of (4). If h1 < 1, then we have

lim
t!+1

ku(t, ·)kC[0,h(t)] = 0 and lim
t!+1

k�(t, ·)kC[0,h(t)] = 0.

Proof. Since u(t, x) > 0 and ux(t, h(t)) < 0, then � satisfies
8
>>>>>><

>>>>>>:

�t �D�xx � �
⇣
1� �

↵

⌘
, for all t > 0 and 0 < x < h(t),

�x(t, 0) = 0, t > 0,

�(t, h(t)) = 0, h0(t) � �µ⇢�x(t, h(t)), t > 0

�(0, x) = �0(x), x 2 [0, h0].

(33)

In view of Lemmas 3.5 and 3.6, we have that lim
t!+1

k�(t, ·)kC[0,h(t)] = 0. Hence,

there exists T > 0 such that �(t, x) < " for all t � T and 0  x  h(t), where
0 < " << 1. Since u(t, x) > 0 and �x(t, h(t)) < 0, then

8
>>>>><

>>>>>:

ut � uxx � u(1� �"� u), t > T, 0 < x < h(t),

ux(t, 0) = 0, t > T,

u(t, h(t)) = 0, h0(t) � �µux(t, h(t)), t > T,

u(T, x) = u0(x), x 2 [0, h0].

(34)

Applying Lemmas 3.5 and 3.6, we obtain that lim
t!+1

ku(t, ·)kC[0,h(t)] = 0.

4.3. Sharp criteria for spreading and vanishing. In this section, we derive
some criteria governing the spreading and vanishing for the free-boundary problem
(4).

Lemma 4.4. If h1 < 1, then h1  ⇡

2
min

(
1,

r
D



)
:= h⇤. Furthermore, h0 �

h⇤ implies that h1 = +1.

Proof. The proof of Lemma 4.4 is essentially the same as that of Theorem 5.1 in
[13]. By Theorem 4.3, we know that if h1 < 1, then

lim
t!+1

ku(t, ·)kC[0,h(t)] = 0, lim
t!+1

k�(t, ·)kC[0,h(t)] = 0.

In the following, we assume that h1 >
⇡

2
min

(
1,

r
D



)
to get the contradiction.

First, as h1 >
⇡

2
, there exists " > 0 such that h1 >

⇡

2

r
1

1� �"
. For such ",

there exists T > 0 such that h(T ) >
⇡

2

r
1

1� �"
and �(t, x)  ", for t > T and
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x 2 [0, h(T )]. Let u(t, x) be the solution of the following problem:

8
>>>><

>>>>:

@tu� @xxu = u(1� �"� u), for t > T and 0 < x < h(T ),

@xu(t, 0) = u(t, h(T )) = 0, t > T,

u(T, x) = u(T, x), 0 < x < h(T ).

(35)

By the comparison principle, we have u(t, x)  u(t, x), for all t > T and

0 < x < h(T ). Since h(T ) >
⇡

2

r
1

1� �"
, the Proposition 3.2 of [2] yields

lim inf
t!+1

u(t, x) � lim inf
t!+1

u(t, x) > 0, which is a contradiction to Theorem 4.3.

Secondly, as h1 >
⇡

2

r
D


, there exists T > 0 such that h(T ) >

⇡

2

r
D


and

u(t, x) > 0, for all t > T and 0 < x < h(T ). Let �(t, x) be the solution of the
following equation

8
>>>><

>>>>:

@t� �D@xx� = �
⇣
1� �

↵

⌘
, t > T, 0 < x < h(T ),

@x�(t, 0) = �(t, h(T )) = 0, t > T,

�(T, x) = �(T, x), 0 < x < h(T ).

(36)

By the comparison principle, we have �(t, x)  �(t, x), for all t > T and 0 < x <

h(T ). Since h(T ) >
⇡

2

r
D


, by the Proposition 3.2 of [2] , we have

lim inf
t!+1

�(t, x) � lim inf
t!+1

�(t, x) > 0,

which is a contradiction to Theorem 4.3.
Finally, since h0(t) > 0 for all t > 0, then together with the above arguments we

can see that h1 = +1 when h0 � ⇡

2
min

(
1,

r
D



)
.

Lemma 4.5. Suppose that the initial datum h0 in problem (4) is such that h0 < h⇤.
Then, there exists µ̄ > 0 depending on u0 and �0 such that h1 = +1 when µ � µ̄.
More precisely, we have

µ̄ = µ1 :=
D

⇢
max

⇢
1,

k�0k1
↵

� 
⇡

2

r
D


� h0

! Z h0

0
�0(x)dx

!�1

.

Furthermore, if k�0k1  1 + ✓ and ku0k1  1, then µ̄ = min {µ1, µ2} , where

µ2 = max

⇢
1,

ku0k1
1� �(1 + ↵)

�⇣⇡
2
� h0

⌘ Z h0

0
u0(x)dx

!�1

.
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Proof. We consider the following problem:
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

@t� �D@xx� = �
⇣
1� �

↵

⌘
, t > 0, 0 < x < h(t),

@x�(t, 0) = 0, t > 0,

�(t, h(t)) = 0, t > 0,

h0(t) = �µ⇢�(t, h(t)), t > 0,

�(0, x) = �0(x), 0  x  h0,

h0 = h(0), t = 0.

(37)

By Lemma 3.2, we have h(t)  h(t) and �(t, x)  �(t, x), for t > 0 and 0 < x < h(t).

Using Lemma 3.7 of [5], if h(0) = h0 < h⇤  ⇡

2

r
D


and µ � µ̄, we have h(1) =

+1. It then follows that h1 = +1.
Suppose now that k�0k1  1 + ↵ and ku0k1  1. That is M2 = 1 + ↵. We

consider the following problem

8
>>>>>>>>>>><

>>>>>>>>>>>:

@tu� @xxu = u(1� �(1 + ↵)� u), t > 0, 0 < x < h(t),

@xu(t, 0) = 0, t > 0,

u(t, h(t)) = 0, t > 0,

h0(t) = �µu(t, h(t)), t > 0,

u(0, x) = u0(x), 0  x  h(0),

h(0) = h0, t = 0.

(38)

From Lemma 3.7 of [5], we know that h(0) = h0 < h⇤  ⇡

2
and µ � µ2, which imply

that h(1) = +1. Thus µ � min{µ1, µ2} implies that h(1) = +1. Therefore, we
have h1 = +1 when µ � min{µ1, µ2}.

Lemma 4.6. Suppose that the initial datum h0, in problem (4), is such that h0 <
h⇤. Then, there exists µ > 0 depending on u0(x) and �0(x) such that h1 < 1 when

µ  µ.

Proof. We adopt the same method used to prove Lemma 5.2 of [13], Lemma 3.8 of

[5] and Corollary 1 of [7]. Let " =
1

2

✓
h⇤
h0

� 1

◆
> 0 since h0 < h⇤. Define

h̄(t) = h0(1 + "� "

2
e��t) for t � 0

V (y) = cos
⇡y

2
for 0  y  1;

and

ū(t, x) = �̄(t, x) = fMe��tV

✓
x

h̄(t)

◆
for 0  x  h̄(t),
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where � =
1

2
min

⇢⇣⇡
2

⌘2 D

(1 + ")2h2
0

� ,
⇣⇡
2

⌘2 1

(1 + ")2h2
0

� 1

�
> 0, as h0(1+") <

h⇤ and

fM =
max {ku0k1, k�0k1}

cos

✓
⇡

2 + "

◆ .

If µ  µ =
"h2

0�(2 + ")

2(1 + ⇢)⇡fM
, then a direct computation yields

8
>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

ūt � ūxx � ū(1� ū) � fMe��tV ((⇡2 )
2 1
(1+")2h2

0
� 1� �) � 0,

t > 0, 0 < x < h̄(t),

�̄t �D�̄xx � �̄

✓
1� �̄

M1 + ↵

◆
� fMe��tV ((

⇡

2
)2

D

(1 + ")2h2
0

� � �) � 0,

t > 0, 0 < x < h̄(t),

ūx(t, 0) = �̄x(t, 0) = 0, t > 0,

ū(t, h̄(t)) = �̄(t, h̄(t)) = 0, t > 0,

h̄0(t) + µ[ūx(t, h̄(t)) + ⇢�̄x(t, h̄(t))] �
"h0�e��t

2

 
1� 2µ(1 + ⇢)⇡fM

"h2
0�(2 + ")

!
� 0,

t > 0.
(39)

Since h0  h̄(0), ū(0, x) � u0(x) and �̄(0, x) � �0(x) for all x 2 [0, h0], then Lemma
3.2 yields that h(t)  h̄(t) on [0,+1). Taking t ! +1, we obtain

h1  h̄(1) = h0(1 + �) < h⇤.

This, together with Lemma 4.4, complete the proof.

Lemmas 4.4 and 4.6 lead to other criteria for spreading and vanishing, in terms
of the parameter D, when h0 is fixed.

Lemma 4.7. For a fixed h0 > 0, let D⇤ =
4h2

0

⇡2
. Then,

(i) if 0 < D  D⇤, spreading occurs (see Definition 4.1).

(ii) Suppose that D⇤ < D  . If µ � µ̄, then the spreading occurs. If µ  µ, then
vanishing occurs (see Definition 4.1).

5. Spreading speed. In this section, we derive upper and lower bounds for the
spreading speed under the free boundary conditions stated in (4). The estimates
are given in terms of well-known parameters.

Theorem 5.1. Let (u, �, h) be the solution of problem (4) with h1 = 1 and recall

that

smin = 2max
n
1,
p
D
o
.

Then,

s⇤  lim inf
t!+1

h(t)

t
 lim sup

t!+1

h(t)

t
 smin,
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where s⇤ is the constant appearing in Lemma 3.8.

Proof of Theorem 5.1. First we will prove lim sup
t!+1

h(t)

t
 smin. From Lemma 3.7,

we know that (U(⇠), V (⇠)) ! (0, 0) and (U 0(⇠), V 0(⇠)) ! (0, 0) as ⇠ ! +1. Then,
we can choose l and g � 1 such that

lU(⇠) � ku0k1, gV (⇠) � k�0k1 for all ⇠ 2 [0, h0]. (40)

Moreover, there exists �0 > h0 depending on D,, µ, ⇢ such that

U(�0) < min
0xh0

✓
U(x)� u0(x)

l

◆
, V (�0) < min

0xh0

✓
V (x)� �0(x)

g

◆
, (41)

U(�0)  1� 1

l
, V (�0) 

✓
1� 1

g

◆
(M1 + ↵), (42)

and

� µ(lU 0(�0) + g⇢V 0(�0)) < smin. (43)

Now let �(t) = �0 + smint for t � 0,

ū = lU(x� smint)� lU(�0) and �̄ = gV (x� smint)� gV (�0) for t � 0

and 0  x  �(t).

It is obvious from (41) and (43) that

ū(0, x) > u0(x), �̄(0, x) > �0(x), for 0  x  h0;

and

�0(t) = smin > �µ(ūx(t,�(t)) + ⇢�̄x(t,�(t))).

Moreover,

ū(t,�(t)) = �̄(t,�(t)) = 0 for all t � 0;

ūx(t, 0) < 0, �̄x(t, 0) < 0 for all t � 0 (by Lemma 3.7).

Then by a calculation, we obtain from (42) that

ūt � ūxx � ū(1� ū) = l

"
(l � 1)

✓
U � lU(�0)

l � 1

◆2

+ U(�0)
l � 1� lU(�0)

l � 1

#

� 0,

and

�̄t �D�̄xx � �̄

✓
1� �̄

M1 + ↵

◆

=
g

M1 + ↵

"
(g � 1)

✓
V � gV (�0)

g � 1

◆2

+ V (�0)
(g � 1)(M1 + ↵)� gV (�0)

g � 1

#

� 0.

Then, by Lemma 3.2, we have h(t)  �(t) for t � 0. Therefore,

lim sup
t!+1

h(t)

t
 lim

t!+1

�(t)

t
= smin.
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Now, we prove lim inf
t!+1

h(t)

t
� s⇤. Let (�, h) be the solution of the free boundary

problem
8
>>>>>>>>><

>>>>>>>>>:

@t� �D@xx� = �
⇣
1� �

↵

⌘
, t > 0, 0 < x < h(t),

�x(t, 0) = 0, t > 0,

�(t, h(t)) = 0, t > 0,

h0(t) = �µ⇢ @x�(t, h(t)), t > 0.

(44)

By the comparison principle, we then have h(t)  h(t). From Theorem 4.2 in [5],
we have

s⇤ = lim
t!+1

h(t)

t
 lim inf

t!+1

h(t)

t
.

6. Proof of existence and uniqueness. This section is devoted to prove the
results about local existence and uniqueness of the solution to the main problem
(4).

Proof of Lemma 2.1. The main idea is adapted from [4]. Let ⇣ 2 C3([0,1)) such
that ⇣(y) = 1 if |y � h0|  h0

4 , ⇣(y) = 0 if |y � h0| > h0
2 , |⇣ 0(y)|  6

h0
, for all y.

Define

x = y + ⇣(y)(h(t)� h0), 0  y < +1. (45)

Note that, as long as |h(t)� h0| 
h0

8
, (x, t) �! (y, t) is a di↵eomorphism from

[0,+1) to [0,+1). Moreover,

0  x  h(t) , 0  y  h0 and x = h(t) , y = h0. (46)

We then compute

@y

@x
=

1

1 + ⇣ 0(y)(h(t)� h0)
= A(h(t), y(t)),

@2y

@x2
=

�⇣ 00(y)(h(t)� h0)

[1 + ⇣ 0(y)(h(t)� h0)]3
= B(h(t), y(t)),

@y

@t
=

�h0(t)⇣(y)

1 + ⇣ 0(y)(h(t)� h0)
= C(h(t), y(t)).

Now, we denote

U(t, y(t)) = u(t, x), V (t, y(t)) = �(t, x), F (U, V ) = U(1� U � �V )

and G(U, V ) = V

✓
1� V

U + ↵

◆
.

Then problem (4) becomes
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8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

@U

@t
= A2Uyy + (B � C)Uy + F (U, V ), t > 0, 0 < y < h0,

@V

@t
= DA2Vyy + (DB � C)Vy +G(U, V ), t > 0, 0 < y < h0,

Uy(t, 0) = Vy(t, 0) = U(t, h0) = V (t, h0) = 0, t > 0,

h0(t) = �µ(Uy(t, h0) + ⇢Vy(t, h0)), t > 0,

U(0, y) = U0(y) = u0(y), y 2 [0, h0], t = 0,

V (0, y) = V0(y) = �0(y), y 2 [0, h0], t = 0.

(47)

We denote by h̃ = �µ(U 0
0(h0) + ⇢V 0

0(h0)). As in [10], we shall prove the local
existence by using the contraction mapping theorem. We let T such that 0 < T 

h0

8(1+h̃)
and introduce the function spaces

X1T := {U 2 C(R) : U(0, y) = U0(y), kU � U0kC(R)  1},

X2T := {V 2 C(R) : V (0, y) = V0(y), kV � V0kC(R)  1},

X3T := {h 2 C1[0, T ], kh0 � h̃kC[0,T ]  1},
where

R = {(t, y) : 0  t  T, 0 < y < h0}.
Then, the space XT = X1T ⇥X2T ⇥X3T is a complete metric space, with the metric

d((U1, V1, h1), (U2, V2, h2)) = kU1 � U2kC(R) + kV1 � V2kC(R) + kh0
1 � h0

2kC[0,T ].

We have

|h(t)� h0| 
Z T

0
|h0(s)|ds  T (1 + h̃)  h0

8
,

so that the mapping (t, x) ! (t, y) is di↵eomorphism.
As mentioned above, we will construct a contraction mapping from XT into XT

in order to prove the existence of a local solution. We begin this construction now.
As 0  t  T, the coe�cients A, B and C are bounded and A2 is between two
positive constants. By standard Lp theory and the Sobolev imbedding theorem, for
any (U, V, h) 2 XT , the following initial boundary value problem
8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

@Û

@t
= A2Ûyy + (B � C)Ûy + F (U, V ), t > 0, 0 < y < h0,

@V̂

@t
= DA2V̂yy + (DB � C)V̂y +G(U, V ), t > 0, 0 < y < h0,

Ûy(t, 0) = V̂y(t, 0) = 0, t > 0,

Û(t, h0) = V̂ (t, h0) = 0, t > 0,

Û(0, y) = U0(y) = u0(y), y 2 [0, h0],

V̂ (0, y) = V0(y) = �0(y), y 2 [0, h0],

(48)

for any ✓ 2 (0, 1), admits a unique bounded solution (Û , V̂ ) 2 C
(1+✓)

2 ,1+✓(R) ⇥
C

(1+✓)
2 ,1+✓(R). Moreover,

kÛk
C

(1+✓)
2

,1+✓(R)
 C1 and kV̂ k

C
(1+✓)

2
,1+✓(R)

 C2,
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where the constants C1 and C2 depend on h0, ✓, kU0kC2[0,h0] and kV0kC2[0,h0].
We now define

ĥ(t) = h0 � µ

Z t

0
[Ûy(⌧, h0) + ⇢V̂y(⌧, h0)]d⌧.

Then, ĥ0(t) = �µ(Ûy(t, h0) + ⇢V̂y(t, h0)) 2 C
✓
2 [0, T ] and kĥ0k

C
✓
2
 C3, where C3

depends on µ, ⇢, h0, ↵, kU0kC2[0,h0] and kV0kC2[0,h0].

Now, we are ready to introduce the mapping � : (U, V, h) ! (Û , V̂ , ĥ). We claim
that � maps XT into itself for su�ciently small T : Indeed, if we take T such that

0 < T  min

⇢
C

�2
1+✓

1 , C
�2
1+✓

2 , C
�2
↵

3

�
,

we then have

kÛ � U0kC(R)  kÛk
C0, 1+✓

2 (R)
T

1+✓
2  C1T

1+✓
2  1,

kV̂ � V0kC(R)  kV̂ k
C0, 1+✓

2 (R)
T

1+✓
2  C2T

1+✓
2  1,

kĥ0 � h̃kC[0,T ]  kĥ0k
C

✓
2 [0,T ]

T
✓
2  C3T

✓
2  1.

Thus we have � as a map from XT into itself.
Now we show that � is a contraction mapping for su�ciently small T . Let

(Ûi, V̂i, ĥi) 2 XT for i = 1, 2. We set Ū = Û1 � Û2, and V̄ = V̂1 � V̂2. Then,
8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

@Ū

@t
= A2(h2(t), y(t))Ūyy + [B(h2(t), y(t))� C(h2(t), y(t))]Ūy + F,

for t > 0 and 0 < y < h0.

@V̄

@t
= DA2(h2(t), y(t))V̄yy + (DB(h2(t), y(t))� C(h2(t), y(t)))V̄y +G,

for t > 0 and 0 < y < h0.

Ūy(t, 0) = V̄y(t, 0) = 0, t > 0,

Ū(t, h0) = V̄ (t, h0) = 0, t > 0,

Ū(0, y) = V̄ (0, y) = 0, 0  y  h0,

(49)

where

F := [A2(h1(t), y(t))�A2(h2(t), y(t))]Û1yy + [(B(h1(t), y(t))�B(h2(t),

y(t)))� (C(h1(t), y(t))� C(h2(t), y(t))]Û1y + F (U1, V1)� F (U2, V2).

G := [DA2(h1(t), y(t))�DA2(h2(t), y(t))]V̂1yy + [(DB(h1(t), y(t))�DB(h2(t),

y(t)))� (C(h1(t), y(t))� C(h2(t), y(t)))]V̂1y +G(U1, V1)�G(U2, V2).

Again, using standard Lp estimates and the Sobolev embedding theorem, we have

kŪk
C

1+✓
2

,1+✓(R)
 C4(kU1 � U2kC(R) + kV1 � V2kC(R) + kh1 � h2kC1[0,T ]),

kV̄ k
C

1+✓
2

,1+✓ (D)  C5(kU1 � U2kC(R) + kV1 � V2kC(R) + kh1 � h2kC1[0,T ]),

and

kh̄0
1 � h̄0

2kC 1+✓
2

,1+✓ ([0, T ])  C6(kU1 �U2kC(R) + kV1 � V2kC(R) + kh1 � h2kC1[0,T ]),
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where the constants C4, C5, and C6 > 0 depend on A, B, C and Ci, for i = 1, 2, 3.
We also have

kŪkC(R) + kV̄ kC(R) + kh̄0
1 � h̄0

2kC[0,T ]

 T
1+✓
2 kŪk

C
1+✓
2

,1+✓(R)
+ T

1+✓
2 kV̄ k

C
1+✓
2

,1+✓(R)

+T
✓
2 kh̄0

1 � h̄0
2kC 1+✓

2
,1+✓([0,T ])

.

Based on the above, if T 2 (0, 1], then

kŪkC(R) + kV̄ kC(R) + kh̄0
1 � h̄0

2kC([0,T ])  C7T
✓
2

�
kUkC(R) + kV kC(R)

+kh0
1 � h0

2kC([0,T ])

 
,

where C7 := max{C4, C5, C6}. We choose

T =
1

2
min

⇢
1,

h0

8(1 + h̃)
, C

�2
1+✓

1 , C
�2
1+✓

2 , C
�2
✓

3 , C
�2
✓

7

�
,

and apply the contraction mapping theorem to conclude that � has a unique fixed
point in XT . This completes the proof of Lemma 2.1.

We now turn to the

Proof of Lemma 2.2. The strong maximum principle yields that u > 0 and � > 0,
for all t 2 [0, T ] and x 2 [0, h(t)). Since u(t, h(t)) = �(t, h(t)) = 0, then Hopf Lemma
yields that ux(t, h(t)) < 0 and �x(t, h(t)) < 0 for all t 2 (0, T ]. Thus, h0(t) > 0 for
all t 2 (0, T ].

Now, we consider the following initial value problem

ū0(t) = ū(1� ū) for t > 0, ū(0) = ku0k1. (50)

The comparison principle implies that u(t, x)  ū(t, x)  max{1, ku0k1} for all
t 2 [0, T ] and for all x 2 [0, h(t)]. Similarly, we consider the following problem

�̄0(t) = �̄(1� �̄

M1 + ↵
) for t > 0, �̄(0) = k�0k1, (51)

to conclude, via the comparison principle, that �(t, x)  max{M1 + ↵, k�0k1} for
all t 2 [0, T ] and x 2 [0, h(t)].

We turn now to prove that h0(t)  ⇤ for t 2 (0, T ]. In order to achieve this, we
shall compare u and � to the following two auxiliary functions

!1(t, x) = M1[2M(h(t)� x)�M2(h(t)� x)2] for t 2 [0, T ] & x 2 [h(t)�M�1, h(t)],

and

!2(t, x) = M2[2M(h(t)� x)�M2(h(t)� x)2] for t 2 [0, T ] & x 2 [h(t)�M�1, h(t)].

As a first choice, we pick M = max

(
1

h0
,

p
2

2
,

r


2D

)
in order to obtain that
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8
>>>>>>>>>>>><

>>>>>>>>>>>>:

@t!1 � @xx!1 � 2M1M2 � u � u(1� u� ��) = @tu� @xxu,

@t!2 �D@xx!2 � 2DM2M2 � � � �(1� �
u+↵ ) = @t� �D@xx�,

!1(t, h(t)) = 0 = u(t, h(t)),

!2(t, h(t)) = 0 = �(t, h(t)),

!1(t, h(t)�M�1) = M1 � u(t, h(t)�M�1),

!2(t, h(t)�M�1) = M2 � �(t, h(t)�M�1).

(52)

We plan to use a comparison argument to complete the proof. For this, we need to
have !1(0, x) � u0(x) and !2(0, x) � �0(x). Note that, for x 2 [h(t)�M�1, h(t)],

u0(x) = �
Z h0

x
u0(s)ds  (h0 � x)ku0kC[0,h0],

�0(x) = �
Z h0

x
�0(s)ds  (h0 � x)k�0kC[0,h0],

!1(0, x) = M1M(h0 � x)[2�M(h0 � x)] � M1M(h0 � x)

and !2(0, x) = M2M(h0�x)[2�M(h0�x)] � M1M(h0�x) for x 2 [h0�M�1, h0].

Thus, if M = max

⇢ku0kC[0,h0]

M1
,
k�0kC[0,h0]

M2

�
, then we have !1(0, x) � u(0, x) and

!2(0, x) � �(0, x). By now, we have two constraints that M should satisfy. We
choose M such that

M = max

(
1

h0
,

p
2

2
,

r


2D
,
ku0kC[0,h0]

M1
,
k�0kC[0,h0]

M2

)
.

Then, the comparison principle yields that !1 � u and !2 � � for t 2 [0, T ] and x 2
[h(t)�M�1, h(t)]. Since !1(t, h(t)) = u(t, h(t)) = 0 and !2(t, h(t)) = �(t, h(t)) = 0,
we then obtain that

@xu(t, h(t)) � @x!1(t, h(t)) = �2MM1 and @x�(t, h(t)) � @x!2(t, h(t)) = �2MM2.

Therefore, we have h0(t)  ⇤, where ⇤ := 2Mµ(M1 + ⇢M2). The proof of Lemma
2.2 is now complete.

7. Discussion and summary of the results. In this paper, we considered a
Leslie-Gower and Holling-type II predator-prey model in a one-dimensional envi-
ronment. The model studies two species that initially occupy the region [0, h0] and
both have a tendency to expand their territory. We obtain several results in this
setting.

(i) Theorem 4.2 and Theorem 4.3 provide the asymptotic behavior of the two
species when spreading success and spreading failure, in terms of h1:

If h1 = +1, then we have

lim
t!+1

u(t, x) = u⇤, lim
t!+1

�(t, x) = �⇤.

If h1 < +1, then we have

lim
t!+1

ku(t, ·)kC[0,h(t)] = 0, lim
t!+1

k�(t, ·)kC[0,h(t)] = 0.
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(ii) A spreading-vanishing dichotomy can be established by using Lemma 4.4 and
the critical length for the habitat can be characterize by h⇤, in the sense that
the two species will spread successfully if h1 > h⇤, while the two species will
vanish eventually if h1  h⇤. If the size of initial habitat h0 is not less than
h⇤, or h0 is less than h⇤, but µ � µ̄ or 0 < D  D⇤, then the two species
will spread successfully. While if the size of initial habitat is less than h⇤ and
µ  µ or D⇤ < D  , then the two species will disappear eventually.

(iii) Finally, Theorem 5.1 reveals that the spreading speed (if exists) is between the
minimal speed of traveling wavefront solutions for the predator-prey model on
the whole real line (without a free boundary) and an elliptic problem induced
from the original model.
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