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ABSTRACT
Scientists have been seeking ways to use Wolbachia to eliminate
the mosquitoes that spread human diseases. Could Wolbachia be
the determining factor in controlling the mosquito-borne infectious
diseases? To answer this question mathematically, we develop a
reaction-diffusion model with free boundary in a one-dimensional
environment. We divide the female mosquito population into two
groups: one is the uninfectedmosquito population that grows in the
whole region while the other is the mosquito population infected
with Wolbachia that occupies a finite small region. The mosquito
population infected with Wolbachia invades the environment with
a spreading front governed by a free boundary satisfying the well-
known one-phase Stefan condition. For the resulting free boundary
problem, we establish criteria under which spreading and vanish-
ing occur. Our results provide useful insights on designing a feasible
mosquito releasing strategy that infects the whole mosquito popu-
lation with Wolbachia and eradicates the mosquito-borne diseases
eventually.
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1. Introduction

Recently, several public health projects were launched in China [27], USA [1] and France
[22], with an aim to !ght mosquito populations that transmit Zika virus, Dengue fever and
Chikungunya. All of these projects involve the release of male Aedes aegypti mosquitoes
infected with the Wolbachia bacteria to the wild. For instance, 20000 male Aedes aegypti
mosquitoes carryingWolbachia bacteria were released on Stock Island of the Florida Keys
in the week of April 20, 2017. Google’s Verily is about to release 20 million machine-
reared Wolbachia-infected mosquitoes in Fresno (see [1]). A factory in Southern China
is manufacturing millions of ‘mosquito warriors’ (male Aedes aegyptimosquitoes carrying
Wolbachia bacteria) to combat epidemics transmitted by mosquitoes [27].

The science behind these projects is based on the following two facts: (i)Wolbachia often
induces cytoplasmic incompatibility (CI) which leads to early embryonic death whenWol-
bachia-infected males mate with uninfected females and (ii) Wolbachia-infected females
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produce viable embryos after mating with either infected or uninfected males, resulting
in a reproductive advantage over uninfected females. In practice,Wolbachia has been suc-
cessfully transferred into Aedes aegypti or Aedes albopictus by embryonic microinjections,
and the injected infection has been stably maintained with complete CI and nearly per-
fectmaternal transmission [2,16,17,23,31,32,34]. Thus, the bacterium is expected to invade
host population easily driving the host population to decline. Successful Wolbachia inva-
sion in Aedes aegypti has been observed by Xi et al. in the laboratory caged population
within seven generations [33].

By releasingAedes albopictusmosquitoes infectedwithWolbachia bacteria into the wild,
it is expected that over a long time period, the wild Aedes aegypti mosquito population
would decline drastically and hopefully be completely replaced by infected mosquitoes
so that the mosquito-borne infectious diseases such as Zika, Dengue fever and Chikun-
gunya would be eradicated. To qualitatively examine ifWolbachia can e"ectively invade the
wild uninfected mosquito population, Zheng, Tang and Yu [38] considered the following
model:

du
dt

= u[b1 − δ1(u + v)] for t > 0,

dv
dt

= v
[

b2v
u + v

− δ2(u + v)
]

for t > 0,
(1)

where u denotes the number of reproductive infected insects and v denotes uninfected
ones, b1 and b2 denote half of the constant birth rates for the infected and uninfected insects
respectively. The parameter δ1 (resp. δ2) denotes the density-dependent death rate for the
infected (resp. uninfected) population. The birth rate of uninfected mosquitoes is dimin-
ished by the factor v/(u + v) due to the sterility caused by cytoplasmic incompatibility (CI)
for mating between infected males and uninfected females.

Let us now recall the origin of system (1) with some details. Let rf and rm denote the
number of released female mosquitoes and the number of releasedmales, respectively, and
suppose the released mosquitoes were infected with Wolbachia. Also, assume that rf and
rm satisfy

drf
dt

= −δ1rf T(t), t > 0,

drm
dt

= −δ1rmT(t), t > 0,
(2)

where

T(t) = rf + rm + If + Im + Uf + Um

denotes the total population size, with Uf , Um, If and Im standing for the numbers of
uninfected reproductive females, uninfected reproductive males, and infected reproduc-
tive females and males other than those from releasing, respectively. Let bI (resp. bU) be
the natural birth rate of the infected (resp. uninfected)mosquitos and 0 ≤ δ ≤ 1 be the pro-
portion of mosquitos born female. Then the proportion of mosquitos born male is 1 − δ.
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Table 1. Strong CI,×means ‘no offspring’.

mate Um Im

Uf Uf or Um ×
If If or Im If or Im

With complete CI (see Table 1) and perfect maternal transmission, we have

dIf
dt

= δbI[If + rf ] − δ1If T(t), t > 0,

dIm
dt

= (1 − δ)bI[If + rm] − δ1ImT(t), t > 0,

dUf

dt
= δbU

[
Uf

Um
rm + Im + Um

]
− δ2Uf T(t), t > 0,

dUm
dt

= (1 − δ)bU
[
Uf

Um
rm + Im + Um

]
− δ2UmT(t), t > 0.

(3)

One can easily verify that both rf and rm approach 0 as t → +∞. We denote by

u(t) = If + Im and v(t) = Uf + Um. (4)

Assuming equal determination case, which means that δ = 1/2, If = Im and Uf = Um,
then system (1) can be obtained by setting b1 = bI/2 and b2 = bU/2. In order to obtain
the spatiotemporal dynamics of (1), Huang et al. [14,15] studied the following reaction-
di"usion system:

∂u
∂t

= d1#u + u(b1 − δ1(u + v)), t > 0, x ∈ $,

∂v
∂t

= d2#v + v
(

b2v
u + v

− δ2(u + v)
)
, t > 0, x ∈ $,

∂u
∂ν

= ∂v
∂ν

= 0, t > 0, x ∈ ∂$,

u(0, x) = u0(x), v(0, x) = v0(x), x ∈ $.

(5)

In (5), d1 and d2 are the di"usion rates, # denotes the Laplace operator in the spatial
variable x, and ν denotes the unit outward normal vector to the boundary of $. We men-
tion that (5) is obtained from a delay di"erential equation model in [38] after ignoring
the delay factor and incorporating the spatial inhomogeneity. Similarly, there has been
several mathematical models formulated to describe the Wolbachia spreading dynamics
[13,35,36,39]. These models focused on studying the subtle relation between the thresh-
old releasing level for Wolbachia-infected mosquitoes and several important parameters
including the CI intensity and the fecundity cost ofWolbachia infection.

We also note that female Aedes aegypti mosquitoes infected with theWolbachia bacte-
ria were initially released at a speci!c site. Hence, the infected female mosquitoes initially
occupy only a small region, while the wild uninfected females are distributed over the
whole area.
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To model the spatial spreading of Wolbachia in the wild mosquito population and
explore the possibility that the infection can indeed occupy the whole region, it is natural
to consider system (5) under the setting of a free boundary problem.

In this work, we consider the following free boundary problem in one-dimensional
space:

∂u
∂t

= d1uxx + u(b1(x) − δ1(u + v)), t > 0, 0 < x < h(t),

∂v
∂t

= d2vxx + v
(
b2(x)v
u + v

− δ2(u + v)
)
, t > 0, x > 0,

ux(t, 0) = vx(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0,

u(0, x) = u0(x), x ∈ [0, h0],

v(0, x) = v0(x), x ∈ [0,+∞).

(6)

The equation governing the movement of the spreading front x = h(t) is deduced in a
manner similar to that in Section 1.3 of [3]. It is known as the one-phase Stefan condition
in the literature. This type of free boundary condition has been widely used in previous
work such as [5–7,10,18–20,24,28–30].

We will !rst analyse system (6) with constant birth rates b1 and b2 in Section 3. Envi-
ronmental variables such as available water surfaces and humidity have huge impacts on
birth rates [8]. This is why we also extend our study to the case with space-dependent birth
rates b1(x) and b2(x) in Section 4, while we assume that the natural death rate is spatially
independent for simplicity.

Throughout this paper, we assume that b1(x) and b2(x) satisfy the following conditions,
unless otherwise stated:

{
∃θ ∈ (0, 1) such that bi ∈ C0,θ ([0,+∞)) ∩ L∞ ([0,+∞)) ,
bi ≥ 0, i = 1, 2. (B1)

C0,θ ([0,+∞)) is the Hölder space with Hölder exponent θ . The initial conditions u0 and
v0 are assumed to be bounded and satisfy

u0 ∈ C2([0, h0]),
u′
0(0) = u0(h0) = 0,

u0(x) > 0 for all x ∈ (0, h0),
v0 ∈ C2[0,∞) ∩ L∞[0,∞) and v0 > 0.

(7)

For the free boundary problem (6)–(7), the main question we are concerned about is
whether the infected population can eventually occupy the whole space or not.

De!nition 1.1 (The notion of vanishing and spreading): If the infected population
eventually occupies the whole space, i.e.

lim
t→∞

h(t) = +∞,

we say spreading occurs; otherwise, we say vanishing occurs.
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The main goal of this work is to derive conditions under which the spreading occurs.
If spreading occurs, then the whole mosquito population will become infected with Wol-
bachia bacteria and this leads to the extinction of the mosquito population and eventually
the eradication of mosquito-borne diseases.

Organization of the paper. The paper is organized as follows. We !rst establish the
global existence and uniqueness of solutions to the free boundary problem (6) in Section 2.
In Section 3, we present a detailed analysis of a speci!c case of model (6). In Section 4, we
study the population dynamics of infected mosquitoes in a heterogeneous environment
with a free boundary condition. In order to better understand the e"ects of dispersal and
spatial variations on the outcome of the competition, we study system (6) over a bounded
domainwithNeumann boundary conditions.We summarize our results in the last section.

2. Global existence of smooth solutions

Using arguments that are similar to those in [11], we can establish the following result
concerning the existence and uniqueness of solutions to system (6)–(7).

Theorem 2.1 (Local existence): Consider system (6) with initial conditions (7). Assume
that b1 and b2 satisfy (B1). Then, there exists T>0 such that (6) admits a unique solution
(u, v, h(t)) satisfying

(i) (u, v, h) ∈ C(1+θ)/2,1+θ (Q) × C(1+θ)/2,1+θ (Q∞) × C1+θ/2([0,T]),
(ii) ‖u‖C(1+θ)/2,1+θ (Q) + ‖v‖C(1+θ)/2,1+θ (Q∞) + ‖h‖C1+θ/2([0,T]) ≤ K,

where 0 < θ < 1 is the Hölder exponent in (B1),

Q = {(t, x) ∈ R2, such that t ∈ [0,T] and x ∈ [0, h(t)]},
Q∞ = {(t, x) ∈ R2, such that t ∈ [0,T] and x ∈ [0,+∞)},

K and T are constants that depend only on h0, θ , ‖u0‖C2([0,h0]) and ‖v0‖C2([0,+∞)).

The next result provides some bounds on the solutions to system (6) with initial
conditions (7).

Lemma 2.1: Let (u, v, h) be a solution of (6) for t ∈ [0,T] for some T>0. Then,

(i) 0 < u(t, x) ≤ M1 for all t ∈ (0,T] and x ∈ [0, h(t)), where

M1 := max
{‖b1‖L∞([0,∞))

δ1
, ‖u0‖L∞([0,h0])

}
.

(ii) 0 < v(t, x) ≤ M2 for all t ∈ (0,T] and x ∈ [0,+∞), where

M2 := max
{‖b2‖L∞([0,∞))

δ2
, ‖v0‖L∞([0,+∞))

}
.

(iii) 0 < h′(t) ≤ ' for all t ∈ (0,T], where ' > 0 depends on µ, d1, ‖u0‖L∞([0,h0]) and
‖u′

0‖C[0,h0].
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Proof: The strong maximum principle yields that u(t, x) > 0 for all t ∈ (0,T] and x ∈
[0, h(t)), and v(t, x) > 0 for all t ∈ (0,T] and x ∈ [0,+∞). Note that u(t, h(t)) = 0 yields
that

ux(t, h(t)) < 0 for all t ∈ (0,T].

Thus, h′(t) > 0 for t ∈ (0,T]. Next, we consider the initial value problem

u′(t) = u(t)(‖b1‖L∞([0,∞)) − δ1u(t)), for t > 0,
u(0) = ‖u0‖L∞([0,h0]).

(8)

From the comparison principle, we know that

u(t, x) ≤ max
{‖b1‖L∞([0,∞))

δ1
, ‖u0‖L∞([0,h0])

}
.

Similarly, we can show that

v(t, x) ≤ max
{‖b2‖L∞([0,∞))

δ2
, ‖v0‖L∞([0,+∞))

}
.

To prove (iii), we !rst consider the auxiliary function

ω1(t, x) := M1
[
2M(h(t) − x) − M2(h(t) − x)2

]
(9)

for t ∈ [0,T] and x ∈ [h(t) − M−1, h(t)], where

M = max





1
h0

,

√
‖b1‖L∞([0,∞))

2d1
,

‖u′
0‖C[0,h0]
M1




.

We have
ω1t − d1ω1xx ≥ 2d1M1M2 ≥ b1M1

≥ u[b1 − δ1(u + v)] = ut − d1uxx,

ω1(t, h(t)) = 0 = u(t, h(t)),

ω1(t, h(t) − M−1) = M1 ≥ u(t, h(t) − M−1).

(10)

We also note that

u0(x) = −
∫ h0

x
u′
0(s) ds ≤ (h0 − x)‖u′

0‖C[0,h0]

and

ω1(0, x) = M1M(h0 − x)[2 − M(h0 − x)] ≥ M1M(h0 − x), for x ∈ [h0 − M−1, h0].

Thus, ω1(0, x) ≥ u(0, x). Applying the comparison principle, we get

ω1(t, x) ≥ u(t, x), for t ∈ [0,T] and x ∈ [h(t) − M−1, h(t)].

Since ω1(t, h(t)) = 0 = u(t, h(t)), we then have

ux(t, h(t)) ≥ ω1x(t, h(t)) = −2MM1.

Consequently, h′(t) = −µux(t, h(t)) ≤ ' with ' := 2µMM1. !
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Bearing the above result in mind, we can show that the local solution obtained in
Theorem 2.1 can indeed be extended to all t>0.

Theorem2.2 (Global existence anduniqueness): System (6)–(7) admits a unique solution
for t ∈ [0,∞).

Proof: Let [0,Tmax) be the maximal time interval in which the unique solution exists. We
will show that Tmax = ∞. Suppose to the contrary that Tmax < ∞. In view of Lemma 2.1,
there exists positive constants M1, M2 and ', independent of Tmax, such that for t ∈
[0,Tmax],

0 < u(t, x) ≤ M1, 0 < v(t, x) ≤ M2 and 0 < h′(t) ≤ '.

Fix δ ∈ (0,Tmax) andK > Tmax. Using the standard Lp estimates together with the Sobolev
embedding theorem and theHölder estimates for parabolic equations (see Lunardi [21] for
eg.), we can !ndM3 depending only on δ, K,M1 andM2 such that

‖u(t, ·)‖C1+θ [0,h(t)) ≤ M3 and ‖v(t, ·)‖C1+θ [0,+∞) ≤ M3 for all t ∈ [δ,Tmax),

where we used the convention that u(t, x) = 0 for x ≥ h(t). By virtue of the proof of
Theorem 2.1 in [11], there exists a τ > 0 depending only on M1, M2 and M3 such that
the solution of (6) with the initial time Tmax − τ/2 can be extended uniquely to the time
Tmax + τ/2, which contradicts the de!nition of Tmax. Thus, Tmax = +∞ and the proof is
complete. !

3. The special case of constant birth rates

System (5) was investigated in [14,15] for two disjoint cases. Namely, the !tness bene!t
case and the !tness cost case. De!ne κ1 and κ2 as κ1 = b1/δ1 and κ2 = b2/δ2. Wolbachia
is said to have the !tness bene!t if κ1 > κ2, which means that the local area is more (or
at least equally) favourable for infected mosquitoes. The !tness cost case is represented by
κ1 < κ2, see [38].

In this section, we assume that bi(x) = bi for i = 1, 2, where bi are positive constants.
In other words, we have the constant-coe#cient free boundary problem given by

∂u
∂t

= d1uxx + u(b1 − δ1(u + v)), t > 0, 0 < x < h(t),

∂v
∂t

= d2vxx + v
(

b2v
u + v

− δ2(u + v)
)
, t > 0, x > 0,

ux(t, 0) = vx(t, 0) = 0, u(t, h(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), t > 0,

h(0) = h0,

u(0, x) = u0(x), x ∈ [0, h0],

v(0, x) = v0(x), x ∈ [0,+∞).

(11)

System (11) is essentially a competition model. For the !tness bene!t case, κ1 > κ2, u is
the so-called superior competitor and v the inferior competitor (see [11]). For the !tness
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cost case, κ1 < κ2, (11) represents a strong competition [25]. Throughout this section, we
always assume u is a superior competitor. That is, the Wolbachia infection has a !tness
bene!t. The strong competition case is usually more complicated to be studied mathemat-
ically. To the best of our knowledge, results for competition models with a free boundary
are very limited in strong competition case. Further details can be seen in [41,42].

We organize this section as follows. In Subsection 3.1 we present some preliminary
results, which play a role in proving our main results. Subsection 3.2 is devoted to the
vanishing case. The invasion dynamics is studied in detail in Subsection 3.3. A rough
estimation of asymptotic spreading speed ofWolbachia invasion is given in Subsection 3.4.

3.1. Preliminary results

Consider the system

∂u
∂t

= d1uxx(t, x) + u(t, x)(b1 − δ1u(t, x)), t > 0, 0 < x < L,
ux(t, 0) = u(t, L) = 0, t ∈ (0,∞).

(12)

The following result holds.

Lemma 3.1: Let L∗ = π/2
√
d1/b1 and d∗ = 4b1L2/π2. Then,

(i) if L ≤ L∗, all positive solutions of (12) tend to zero in C([0, L]) as t → +∞.
(ii) If L > L∗, there exists a unique positive stationary solution φ of (12) such that all positive

solutions of (12) approach φ in C([0, L]) as t → +∞.

Proof: (i) and (ii) follow from Propositions 3.1, 3.2 and 3.3 of [4]. !

We recall the following comparison principle.

Lemma 3.2 (Comparison principle [11]): Assume that 0 ≤ T0 < T < +∞ and h̄, h ∈
C1([T0,T]). Denote by

GT = {(t, x) ∈ R2 : t ∈ (T0,T], x ∈ (0, h)}

and

G1
T = {(t, x) ∈ R2 : t ∈ (T0,T] and x ∈ (0, h)}.

Let

u ∈ C(GT) ∩ C1,2(GT), ū ∈ C(G1
T) ∩ C1,2(G1

T)

and

v̄, v ∈ L∞ ∩ C([T0,T] × [0,+∞)) ∩ C1,2((T0,T] × [0,+∞)).
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Suppose that

∂ū
∂t

− d1ūxx ≥ δ1ū(κ1 − ū − v), T0 < t ≤ T, 0 < x < h̄(t),

∂u
∂t

− d1
∂2u
∂x2

≤ δ1u(κ1 − u − v̄), T0 < t ≤ T, 0 < x < h(t),

∂ v̄
∂t

− d2v̄xx ≥ δ2v̄
(

κ2v̄
u + v̄

− v̄ − u
)
, T0 < t ≤ T, x > 0,

∂v
∂t

− d2
∂2v
∂x2

≤ δ2v
(

κ2v
ū + v

− v − ū
)
, T0 < t ≤ T, x > 0,

(13a)

h′(t) ≤ −µux(t, h(t)),T0 < t ≤ T,

h̄′(t) ≥ −µūx(t, h̄(t)),T0 < t ≤ T,
(13b)

and
ūx(t, 0) ≤ 0, ū(t, h̄(t)) = 0, T0 < t ≤ T,

∂xu(t, 0) ≥ 0, u(t, h(t)) = 0, T0 < t ≤ T,

v̄x(t, 0) ≤ 0, vx(t, 0) ≥ 0, T0 < t ≤ T,

h(T0) ≤ h(T0) ≤ h̄(T0),

u(T0, x) ≤ u(T0, x) ≤ ū(T0, x), 0 ≤ x ≤ h(T0),

v(T0, x) ≤ v(T0, x) ≤ v̄(T0, x), x ≥ 0.

(13c)

Let (u, v, h) be the unique solution of (11). Then,

(i) h(t) ≤ h̄(t), u(t, x) ≤ ū(t, x) and v(t, x) ≥ v(t, x) for all (t, x) in (T0,T] × [0,+∞).
(ii) h(t) ≥ h(t), u(t, x) ≥ u(t, x) and v(t, x) ≤ v̄(t, x) for all (t, x) in (T0,T] × [0,+∞).

The following follows from Lemmas A.2 and A.3 in [37].

Lemma 3.3: (a) Let a, b and q be !xed positive constants. For any given ε > 0 and L > 0,
there exists

l > max

{

L,
π

2

√
d
a

}

such that, if the continuous and non-negative function U(t, x) satis!es

Ut − dUxx ≥ U(a − bU), t > 0, 0 < x < l,
Ux(t, 0) = 0,U(t, l) ≥ q, t > 0, (q ≥ 0),

(14)

with U(0, x) > 0 for all x ∈ [0, l), then

lim inf
t→+∞

U(t, x) >
a
b

− ε uniformly on [0, L].
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(b) Let a, b and q be !xed positive constants. For any given ε > 0 and L > 0, there exists
l > max{L,π/2

√
d/a} such that

lim sup
t→+∞

V(t, x) <
a
b

+ ε uniformly on [0, L],

where V(t, x) is a continuous and non-negative function satisfying

Vt − dVxx ≤ V(a − bV), t > 0, 0 < x < l,
Vx(t, 0) = 0,V(t, l) ≤ q, t > 0, (q ≥ 0),

(15)

and V(0, x) > 0 for all x ∈ [0, l).

We are now in the position to present part of our main results.

3.2. The vanishing case

We consider the vanishing case in this subsection.

Theorem 3.1: Let (u, v, h) be the solution of system (11)with initial data (7). If h∞ < +∞,
then

lim
t→+∞

‖u(t, ·)‖C[0,h(t)] = 0 and lim
t→+∞

v(t, x) = κ2

uniformly in any bounded subset of [0,+∞).

Proof: Theorem2.1 yields that for θ ∈ (0, 1), there is a constant Ĉ depending on θ , (u0, v0),
h0 and h∞ such that

‖u‖C(1+θ)/2,1+θ (G) + ‖v‖C(1+θ)/2,1+θ (G) + ‖h(t)‖C1+θ/2([0,∞)) ≤ Ĉ, (16)

where

G := {(t, x) ∈ [0,∞) × [0, h(t)]}.

Suppose that

lim sup
t→+∞

‖u(t, ·)‖C([0,h(t)]) = ε > 0.

Then, there exists a sequence (tk, xk) in (0,∞) × [0, h(t)], where tk → ∞ as k → ∞, such
that

u(tk, xk) ≥ ε

2
for all k ∈ N.

Note that 0 ≤ xk < h(tk) < h∞ < ∞. By passing to a subsequence if necessary, it follows
that xk → x0 ∈ (0, h∞) as k → ∞. De!ne

uk(t, x) := u(t + tk, x) and vk(t, x) = v(t + tk, x)

for t ∈ (−tk,∞) and x ∈ [0, h(t + tk)]. It follows from (16) and standard parabolic regu-
larity that {(uk, vk)} has a subsequence {(uki , vki)} satisfying (uki , vki) → (ũ, ṽ) as ki → ∞,
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where (ũ, ṽ) is the solution to the following system

∂ũ
∂t

= d1ũxx + ũ [b1 − δ1(ũ + ṽ)] , (t, x) ∈ (−∞,+∞) × (0, h∞),

∂ ṽ
∂t

= d2ṽxx + ṽ
[

b2ṽ
ũ + ṽ

− δ2(ũ + ṽ)
]
, (t, x) ∈ (−∞,+∞) × (0, h∞),

(17)

with ũ(t, h∞) = 0 for all t ∈ R. Since

ũ(0, x0) = lim
ki→∞

uki(0, xki) = lim
ki→∞

u(tki , xtki ) ≥ ε

2
,

the maximum principle implies that ũ > 0 in (−∞,+∞) × (0, h∞). Hence, we can
apply Hopf Lemma at the point (0, h∞) to obtain ũx(0, h∞) < 0. Therefore, we have
ux(tki , h(tki)) = ∂xuki(0, h(tki)) < 0 for large i. This, together with the Stefan condition,
implies that h′(tki) > 0 .

On the other hand, h∞ < +∞ implies h′(t) → 0 as t → ∞ (see Lemma 3.3 in [12]).
This is a contradiction. Thus,

lim
t→+∞

‖u(t, ·)‖C[0,h(t)] = 0.

Next, we prove that limt→+∞ v(t, x) = κ2. Having limt→+∞ ‖u(t, ·)‖C[0,h(t)] = 0 implies
that, for any ε ∈ (0, 1), there exists T>0 such that 0 ≤ u(t, x) ≤ ε for all t > T and x ∈
(0 + ∞). Thus,

∂v
∂t

≥ d2vxx + v
[

b2v
ε + v

− δ2(ε + v)
]
, t > T, x > 0,

vx(t, 0) = 0, v(t,+∞) ≥ 0, t > T,

v(T, x) > 0.

(18)

By Lemma 3.3 and the arbitrariness of ε, we have lim inf t→+∞ v(t, x) ≥ b2/δ2 = κ2
uniformly in any bounded subset of [0,+∞). This, together with the fact
lim supt→+∞ v(t, x) ≤ κ2, shows that limt→+∞ v(t, x) = κ2. !

3.3. The invasion dynamics

Theorem 3.2: Suppose (u, v, h) is the solution of system (11) under conditions (7). If h∞ =
+∞, then limt→+∞ u(t, x) = κ1 and limt→+∞ v(t, x) = 0 uniformly in any compact subset
of [0,+∞).

Proof: Consider the system

ũ′(t) = δ1ũ(κ1 − ũ), t > 0,
ũ(0) = ‖u0‖L∞([0,h0]).

(19)

Then, limt→+∞ ũ(t) = κ1 and u(t, x) ≤ ũ(t). Consequently, we have

lim sup
t→+∞

u(t, x) ≤ κ1 uniformly for x ∈ [0,+∞).
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In a similar manner, we can obtain that

lim sup
t→+∞

v(t, x) ≤ κ2 uniformly for x ∈ [0,+∞).

Since κ1 > κ2 then, for δ = (κ1 − κ2)/2, there exists T1 > 0 such that v(t, x) ≤ κ2 + δ for
all t > T1 and x ≥ 0. If h∞ = +∞, then for any given L, there exists l > {L,π/2

√
d1/δ1δ}

such that u satis!es

∂u
∂t

≥ d1uxx + δ1u(δ − u), t > T1, 0 < x < l,
ux(t, 0) = 0, u(t, l) ≥ 0, t > T1,
u(T1, x) > 0, 0 < x < l.

(20)

By Lemma 3.3, we know that for su#ciently small ε > 0, lim inf t→+∞ u(t, x) > δ − ε uni-
formly in any compact subset of [0, L]. Since h∞ = +∞, there exists T2 > T1 such that
h(T2) > L and u(t, x) ≥ δ/2 for all t > T2 and 0 ≤ x < L. Then, (u, v) satis!es

∂u
∂t

= d1uxx + u[b1 − δ1(u + v)], t > T2, 0 < x < L,

∂v
∂t

= d2vxx + v
[

b2v
u + v

− δ2(u + v)
]
, t > T2, 0 < x < L,

ux(t, 0) = vx(t, 0) = 0, t > T2,

u(T2, x) ≥ δ

2
, v(T2, x) ≤ κ2 + δ, 0 < x < L.

(21)

Let (u, v̄) be the solution to the following problem:

∂u
∂t

= d1uxx + u[b1 − δ1(u + v̄)], t > T2, 0 < x < L,

∂ v̄
∂t

= d2v̄xx + v̄
[

b2v̄
u + v̄

− δ2(u + v̄)
]
, t > T2, 0 < x < L,

∂xu(t, 0) = v̄x(t, 0) = 0, t > T2,

u(t, L) = δ

2
, v̄(t, L) = κ2 + δ, t > T2,

u(T2, x) = δ

2
, v̄(T2, x) = κ2 + δ, 0 ≤ x ≤ L.

(22)

It follows from the comparison principle that

u(t, x) ≥ u(t, x) and v(t, x) ≤ v̄(t, x) for t > T2 and 0 ≤ x ≤ L.

By Corollary 3.6 of [26], we have

lim
t→+∞

u(t, x) = uL(x) and lim
t→+∞

v̄(t, x) = v̄L(x) uniformly in [0, L].
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Here, (uL, v̄L) satis!es

d1∂xxuL + uL[b1 − δ1(uL + v̄L)] = 0, 0 < x < L,

d2∂xxv̄L + v̄L
[

b2v̄L
uL + v̄L

− δ2(uL + v̄L)
]

= 0, 0 < x < L,

∂xuL(0) = ∂xv̄L(0) = 0,

uL(L) = δ

2
, v̄L(L) = κ2 + δ.

(23)

Letting L → +∞, it follows from standard elliptic regularity and a diagonal procedure that
(uL(x), v̄L(x)) converges to (u∞(x), v̄∞(x)) uniformly on any compact subset of [0,+∞),
where (u∞, v̄∞) satis!es

d1∂xxu∞ + u∞[b1 − δ1(u∞ + v̄∞)] = 0, x > 0

d2∂xxv̄∞ + v̄∞

[
b2v̄∞

u∞ + v̄∞
− δ2(u∞ + v̄∞)

]
= 0, x > 0

∂xu∞(0) = ∂xv̄∞(0) = 0,

u∞(x) ≥ δ

2
, v̄∞(x) ≤ κ2 + δ, 0 < x < +∞.

(24)

We consider now the following system:

du1
dt

= u1(b1 − δ1(u1 + v1)), t > 0,

dv1
dt

= v1
(

b2v1
u1 + v1

− δ2(u1 + v1)
)
, t > 0,

u1(0) = δ

2
, v1(0) = κ2 + δ.

(25)

Since κ1 > κ2, then (u1, v1) → (κ1, 0) as t → +∞ (see Lemma 2.2 of [38], for e.g.). Then,
the solution (U,V) of the problem

∂U
∂t

= d1Uxx + U(b1 − δ1(U + V)), t > 0, x ≥ 0,

∂V
∂t

= d2Vxx + V
(

b2V
U + V

− δ2(U + V)

)
, t > 0, x ≥ 0,

Ux(t, 0) = Vx(t, 0) = 0, t > 0,

U(0, x) = δ

2
, V(0, x) = κ2 + δ, x ≥ 0.

(26)

satis!es (U(t, x),V(t, x)) → (κ1, 0), as t → +∞, uniformly in x ∈ [0,+∞). By the com-
parison principle, we have u∞ ≥ U and v̄∞ ≤ V for t ≥ 0, which immediately yields
that

lim
t→+∞

u(t, x) = κ1 and lim
t→+∞

v(t, x) = 0.

The criteria for spreading and vanishing are given in the following theorem. !
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Theorem 3.3: If h0 ≥ π/2
√
d1/δ1(κ1 − κ2) := h∗

0, then h∞ = +∞.

Proof: Note that h(t) is nondecreasing. We only need to show that h∞ < +∞ implies
h∞ ≤ h∗

0. It follows from Theorem 3.1 that h∞ < +∞ implies

lim
t→+∞

‖u(t, ·)‖C[0,h(t)] = 0 and lim
t→+∞

v(t, x) = κ2

uniformly in any bounded subset of [0,+∞). Assume that h∞ > h∗
0. Then for su#ciently

small ε > 0, there exists T>0 such that

h(t) >
π

2

√
d1

δ1(κ1 − κ2) − ε
and v(t, x) ≤ κ2 + ε

δ1
for t ≥ T and x ∈ [0,+∞).

Let u be the solution of the following problem

∂u
∂t

− d1uxx = δ1u
(

κ1 − κ2 − ε

δ1
− u

)
, t > T, 0 < x < h(T),

ux(t, 0) = 0 = u(t, h(T)), t > T,

u(T, x) = u(T, x), 0 < x < h(T).

(27)

By the comparison principle, we have u(t, x) ≤ u(t, x) for all t ≥ T and x ∈ [0, h(T)].
Since h(t) > π/2

√
d1/δ1(κ1 − κ2) − ε for t>T then, by Lemma 3.1, we know that

limt→+∞ u = U > 0 uniformly in any compact subset of (0, h(T)), whereU is the unique
positive solution of

−d1Uxx = δ1U
[
κ1 − κ2 − ε

δ1
− U

]
, 0 < x < h(T),

Ux(t, 0) = 0 = U(t, h(T)).
(28)

Thus,

lim inf
t→+∞

u(t, x) ≥ lim
t→+∞

u(t, x) = U(x) > 0,

which is a contradiction. Therefore, h∞ ≤ h∗
0 and this completes the proof. !

Theorem 3.4: If h0 < h∗
0 , then there exists µ̄ > 0 such that h∞ = +∞ as µ ≥ µ̄.

Proof: Since lim supt→+∞ v(t, x) ≤ κ2 + ε uniformly for x ∈ [0,+∞), then there exists
T1 > 0 such that v(t, x) ≤ κ2 when t > T1. So, (u, h) satis!es

∂u
∂t

≥ d1uxx + δ1u[κ1 − κ2 − u], t > T1, 0 < x < h(t),

h′(t) = −µux(t, h(t)), t > T1,

ux(t, 0) = 0, u(t, h(t)) = 0, t > T1,

u(T1, x) > 0, 0 < x < h(T1).

(29)
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Note that, u(T1, x) depends on µ. So, we consider the following problem.

∂ũ(t, x)
∂t

= d1̃uxx + ũ(b1 − δ1(̃u + ṽ)), t > 0, 0 < x < h0,

∂ ṽ(t, x)
∂t

= d2̃vxx + ṽ
(

b2̃v
ũ + ṽ

− δ2(̃u + ṽ)
)
, t > 0, 0 < x < h0,

ũx(t, 0) = ṽx(t, 0) = 0, t > 0,

ũ(t, h0) = 0, t > 0,

ũ(0, x) = u0(x), 0 < x < h0,

ṽ(0, x) = max
{
κ2, ‖v0‖L∞([0,+∞))

}
, 0 < x < h0,

ṽx(t, h0) = max
{
κ2, ‖v0‖L∞([0,+∞))

}
, t > 0.

(30)

It follows from the comparison principle that

u(T1, x) ≥ ũ(T1, x) for all (t, x) ∈ [0,+∞) × [0, h0].

Clearly, ũ(T1, x) is independent of µ. Now, we consider the following system.

∂u
∂t

− d1uxx = δ1u[κ1 − κ2 − u], t > T1, 0 < x < h(t),

ux(t, 0) = 0 = u(t, h(t)), t > T1,

h′(t) = −µux(t, h(t)), t > T1,

u(T1, x) = ũ(T1, x), x ∈ [0, h0],

h(T1) = h0.

(31)

By Lemma 3.2, we know that h(t) ≤ h(t) for t > T1. It follows from [10, Lemma 3.7] that
h∞ = +∞ if µ ≥ µ̄, where

µ̄ := max
(
1,

‖̃u(T1, x)‖∞
κ1 − κ2

)
d1(h∗

0 − h0)
∫ h0
0 ũ(T1, x) dx

.

This implies that h∞ = +∞. !

By Theorems 3.3 and 3.4, we can also derive spreading criteria in terms of the di"usion
coe#cient d1, for any !xed h0.

Theorem 3.5 (Spreading criteria): Let d∗
1 = 4δ1(κ1 − κ2)h20/π2, where h0 is any pre!xed

positive constant. Then, spreading occurs provided that either

(1) 0 < d1 ≤ d∗
1 or

(2) d1 > d∗
1 and µ ≥ µ̄.

Our next result is a criterion on ‘vanishing’.
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Theorem 3.6: Assume that

h0 <
π

2

√
d1
b1

= π

2

√
d1

δ1κ1
< h∗

0.

Then, there exists µ > 0 such that h∞ < +∞, whenever µ ≤ µ.

Proof: Consider the following problem

ūt − d1ūxx = ū(b1 − δ1ū), t > 0, 0 < x < h̄(t),
ūx(t, 0) = 0, ū(t, h̄(t)) = 0, t > 0,
h̄′(t) = −µux(t, h̄(t)), t > 0,
u(0, x) = u0(x), h̄(0) = h0, x ∈ [0, h0].

(32)

Lemma 3.2 applies and yields that

h(t) ≤ h̄(t) and u(t, x) ≤ ū(t, x) for t > 0 and 0 ≤ x ≤ h(t).

Furthermore, by Lemma 3.8 of [10], there exists µ > 0 such that h̄∞ < +∞ in the case
µ ≤ µ, where

µ =
δ̃γ̃ h20
4M̃

, γ̃ = 1
2

[(π

2

)2 d1
h20

− b1
]
,

and δ̃, M̃ are such that
(π

2

)2 d1
(1 + δ̃)2h20

− b1 = γ̃

and

u0(x) ≤ M̃ cos
(

π

2
x

h0(1 + δ̃/2)

)
, for x ∈ [0, h0].

Therefore, h∞ < +∞. !

3.4. The spreading speed

If spreading occurs, it is important to estimate the spreading speed of h(t). Following
an idea in [12], one can obtain a rough estimate of the spreading speed as stated in the
following theorem.

Theorem 3.7 ([12]): Suppose that κ1 > κ2 and let (u, v, h) be the solution of (11). If h∞ =
+∞, u0(x) ≤ κ1 in [0, h0), v0(x) > 0 in [0,+∞) and lim infx→+∞ v0(x) ≥ κ2, then

lim sup
t→+∞

h(t)
t

≤ s∗,

where s∗ is the minimal speed of the travelling waves to the problem related with (11) in the
entire space. This estimation of the spreading speed is independent of µ.
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However, in the !tness bene!t case, we can derive an estimate better than the one in
Theorem 3.4. We !rst recall Proposition 5.1 of [11].

Proposition 3.1 ([11]): For any given constants d1 > 0, b1 > 0, δ1 > 0 and β ∈
[0, 2

√
b1d1), the problem

−d1U ′′ + βU ′ = b1U − δ1U2 for x ∈ (0,∞),
U(0) = 0, (33)

admits a unique positive solution U = Uβ , which depends on d1, b1, δ1,β , and satis!es
Uβ(x) → κ1 as x → +∞. Moreover, U ′(x) > 0 for x ≥ 0, and for each µ > 0, there exists
a unique β0 = β0(µ, d1, b1, δ1) ∈ (0, 2

√
b1d1) such that µU ′

β0
(0) = β0.

Our result reads:

Theorem 3.8: Assume κ1 > κ2. If h∞ = +∞, then

β0(µ, κ1 − κ2, d1) ≤ lim inf
t→+∞

h(t)
t

≤ lim sup
t→+∞

h(t)
t

≤ β0(µ, b1, δ1, d1),

where β0 is determined by Proposition 3.1.

Proof: Note that

∂u
∂t

− d1uxx = u[b1 − δ1(u + v)] ≤ u(b1 − δ1u), t > 0, 0 < x < h(t),
ux(t, 0) = 0, u(t, h(t)) = 0, t > 0,
h′(t) = −µux(t, h(t)), t > 0,
u(0, x) = u0(x), x ∈ [0, h0].

(34)

Thus, the pair (u, h) is a subsolution to the problem

∂ū
∂t

− d1ūxx = ū(b1 − δ1ū), t > 0, 0 < x < h̄(t),
ūx(t, 0) = 0, ū(t, h̄(t)) = 0, t > 0,
h̄′(t) = −µūx(t, h̄(t)), t > 0,
ū(0, x) = u0(x), h̄(0) = h0, x ∈ [0, h0].

(35)

By the comparison principle, h(t) ≤ h̄(t) for t>0. Theorem 4.2 of [10] yields that

lim
t→+∞

h̄(t)
t

= β0(µ, b1, δ1, d1).

Hence

lim sup
t→+∞

h(t)
t

≤ β0(µ, b1, δ1, d1).

Note that lim supt→+∞ v(t, x) ≤ κ2 uniformly for x ∈ [0,+∞) and h∞ = +∞. Then,
there exists Tε > 0 such that v(t, x) ≤ κ2 + ε and

h(Tε) >
π

2

√
d1

κ1 − κ2 − ε
when t > Tε .
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Next, we consider the following problem

∂u
∂t

− d1
∂2u
∂x2

= u(κ1 − κ2 − ε − u), t > Tε , 0 < x < h(t),

ux(t, 0) = 0, u(t, h(t)) = 0, t > Tε ,

h′(t) = −µux(t, h(t)), t > Tε ,

u(Tε , x) = u(Tε , x), x ∈ [0, h(Tε)].

(36)

By the comparison principle, we obtain h(t) ≥ h(t) for t > Tε . From Theorem 3.3, we
know that h(∞) = +∞. Using a similar argument as above, we have limt→+∞(h(t)/t) =
β0(µ, κ1 − κ2, d1). Therefore,

lim inf
t→+∞

h(t)
t

≥ β0(µ, κ1 − κ2, d1). !

4. The free boundary problemwith a heterogeneous birth rate

In this section, we consider the free boundary problem (6)–(7) with the heterogeneous
birth rates b1(x) and b2(x).

4.1. Some useful lemmas

In this subsection, we !rst study a related eigenvalue problem:

dφxx + b(x)φ + λφ = 0, x ∈ (0, h0),
φx(0) = φ(h0) = 0. (37)

Problem (37) admits a positive principal eigenvalue λ1 determined by

λ1 = inf
φ∈W1,2((0,h0))

{∫ h0

0
[dφ2

x − b(x)φ2] dx, φx(0) = φ(h0) = 0,
∫ h0

0
φ2 dx = 1

}

.

(38)

We state two hypotheses that we refer to when needed. We use a generic symbol B(x) in
the statement of the hypotheses. The function B(x) will be replaced accordingly (by b, b1
or b2) in the rest of this Section.

B(x) ∈ C1 ([0,+∞)) ∩ L∞ ([0,+∞)) and B(x) is positive somewhere in (0, h0). (B2)

{
B(x) ∈ C1 ([0,+∞)) and b < B(x) < b̄ for all x ∈ [0,+∞),
where b and b̄ are two positive constants. (B3)

Remark 4.0.1: In order to compare the principal eigenvalues λ1 associated with di"erent
parameters, we denote the principal eigenvalue λ1 by λ1(d, h0). When we !x h0 and study
the property of λ1 as d varies, we write λ1 = λ1(d). Similarly, we write λ1 = λ1(h0) when
d is !xed while h0 varies.
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We gather the following known results about the dependance of λ1 on d and h.

Lemma 4.1 ([40]): Suppose that b(x) satis!es (B2), where B(x) is replaced by b(x). Then,
λ1 = λ1(d) has the following properties:

(i) λ1(d) is increasing with respect to d.
(ii) λ1(d) → +∞ as d → +∞ and λ1(d) → −maxx∈[0,l] b(x) < 0 as d → 0.
(iii) For any !xed h0 > 0, there exists d = d∗ > 0 such that

• λ1(d) < 0 for 0 < d < d∗,
• λ1(d) > 0 for d > d∗, and
• λ1(d) = 0 for d = d∗.

Lemma 4.2 ([40]): Assume that (B3) holds, where B(x) is replaced by b(x). Then, λ1 =
λ1(h0) has the following properties:

(i) λ1(h0) is monotone decreasing with respect to h0.
(ii) λ1(h0) → +∞ as h0 → 0 and limh0→+∞ λ1(h0) < 0.
(iii) For any !xed d > 0, there exists h0 = h∗

0 > 0 such that
• λ1(h0) > 0 for 0 < h0 < h∗

0,
• λ1(h0) < 0 for h0 > h∗

0,
• λ1(h0) = 0 for h0 = h∗

0 .

For the reader’s convenience, we also recall some facts related to the following problem

∂v
∂t

= d2vxx + v (b2(x) − δ2v) , t > 0, x > 0,
vx(t, 0) = 0, t > 0,
v(0, x) = v0(x), x ∈ [0,+∞).

(39)

The proof of the next lemma follows from Lemma 5.2 and Lemma 6.2 of [40].

Lemma 4.3: Assume that b2(x) satis!es (B3), where B(x) is replaced by b2(x). Let v(t, x) be
the unique solution of (39) with an initial condition

v0 ∈ C2[0,∞) ∩ L∞[0,∞) and v0 > 0.

Then,

lim
t→+∞

v(t, ·) = φv∗ uniformly in any compact subset of [0,∞),

where φv∗ is the unique positive solution of the following elliptic problem

d2vxx + v (b2(x) − δ2v)) = 0, x > 0,
vx(0) = 0. (40)

4.2. Sharp criteria for spreading and vanishing

Let us !rst consider the vanishing case.
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Theorem 4.1: Let (u, v, h) be the solution of system (6) subject to initial conditions (7). If
h∞ < +∞ and b2 satis!es (B3), where we replace B(x) by b2(x), then

lim
t→+∞

‖u(t, ·)‖C[0,h(t)] = 0 and lim
t→+∞

v(t, x) = φv∗

uniformly in any bounded subset of [0,+∞).

The proof is similar to that of Theorem 3.1, above.
In order to obtain sharp criteria for spreading, we require stronger conditions on b1(x)

and δ1. Namely, we assume that

b1(x) − δ1φv∗ is positive somewhere in [0, h0]. (41)

Our assumption (41) is not excessive in the sense that, when bi and δi(i = 1, 2) are constant,
we have φv∗ = b2/δ2. Consequently, b1 − δ1φv∗ is a positive constant over the interval
[0,+∞).

Theorem 4.2: Assume that b1(x) − δ1φv∗(x) satis!es (B2) and b2(x) satis!es (B3) (where B
is replaced accordingly). If 0 < d1 < d∗

1 , then spreading occurs.

Proof: First, we consider the following equation:

∂v
∂t

(t, x) = d2vxx + v(b2(x) − δ2v), t > 0, x > 0,

vx(t, 0) = 0, t > 0,

v(0, x) = v0(x).

(42)

Since b2(x) satis!es the hypotheses of Lemma 4.3, all solutions of (42) with non-trivial
non-negative initial values converge to φv∗ as t → ∞.

It follows, from the comparison principle, that v ≤ v for all t>0 and x>0. Since
limt→+∞ v(t, x) = φv∗ uniformly in any compact subset of [0,∞), then, for any ε > 0,
there exists T>0 such that v(t, x) ≤ φv∗ + ε, for t ≥ T.

Consider the following eigenvalue problem:

d1ϕxx + ϕ(b1(x) − δ1(φv∗ + ε)) + λϕ = 0, x ∈ (0, h0),
ϕx(0) = ϕ(h0) = 0. (43)

It is well known that the principal eigenvalue λ1 can be characterized by

λ1 = inf
ϕ∈H1(0,h0)

{∫ h0

0
d1ϕ2

x − (b1(x) − δ1(φv∗ + ε))ϕ2,
∫ h0

0
ϕ2 = 1

}

.

Using (iii) of Lemma 4.1, for any !xed h0, there exists d∗
1 such that

λ1(d1) < 0 for all 0 < d1 < d∗
1 , λ1(d1) = 0 for d1 = d∗

1 , and

λ1(d1) > 0 for d1 > d∗
1 .
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In this theorem,we have 0 < d1 < d∗
1 . Let us setu = δϕ1(x), for t ≥ T and x ∈ [0, h0] (here

ϕ1(x) is the corresponding eigenfunction of λ1). Choose δ > 0, small enough, so that

δϕ1(x) ≤ min
{
−λ1

δ1
, u(T, x)

}
for x ∈ [0, h0].

A straightforward calculation leads to

∂u
∂t

− d1uxx − u(b1(x) − δ1(φv∗ + ε) − δ1u)

= δϕ1(x)(λ1 + δ1δϕ1(x)) ≤ 0 for t > T, 0 < x < h0,

ux(t, 0) = 0, t > T,

u(t, h0) = 0, t > T,

u(0, x) = δϕ1 ≤ u(T, x), 0 ≤ x ≤ h0.

(44)

By the comparison principle, we have u ≥ u, for t ≥ T and x ∈ [0, h0]. Thus,

lim inf
t→∞

‖u(t, ·)‖C[0,h0] ≥ δϕ1(0) > 0.

By Theorem 4.1, we have h∞ = +∞. Therefore, spreading occurs. !

Theorem4.3: Suppose that b1(x) − δ1φv∗(x) satis!es (B3) and b2(x) satis!es the hypotheses
of Lemma 4.3. If h0 > h∗, then h∞ = +∞ (i.e. the species u spreads eventually).

Proof: Similarly, we consider the following equation

∂ v̄
∂t

= d2v̄xx + v̄(b2(x) − δ2v̄), t > 0, x > 0,

v̄x(t, 0) = 0, t > 0,

v̄(0, x) = v0(x).

(45)

Since b2(x) satis!es the hypotheses of Lemma 4.3, all solutions of (45) with nontrivial and
nonnegative initial conditions converge to φv∗ as t → ∞.

It follows from the comparison principle that v ≤ v for t>0, x>0. Since lim supt→+∞
v(t, x) = φv∗ uniformly in any compact subset of [0,∞). So for any ε > 0, there exists
T>0 such that v(t, x) ≤ φv∗ + ε for t ≥ T.

Consider the following eigenvalue problem:

d1ϕxx + ϕ(b1(x) − δ1(φv∗ + ε)) + λϕ = 0, x ∈ (0, h0),
ϕx(0) = ϕ(h0) = 0. (46)

The principal eigenvalue λ1 is characterized by

λ1 = inf
ϕ∈H1(0,h0)

{∫ h0

0
d1ϕ2

x − (b1(x) − δ1(φv∗ + ε))ϕ2,
∫ h0

0
ϕ2 = 1

}

.

Since b1(x) − δ1φv∗ satis!es the hypotheses of (B3). Then by Lemma 4.2, for any !xed d1,
there existsh∗ such thatλ1(h0) < 0 for allh0 > h∗,λ1(h0) = 0 forh0 = h∗, andλ1(h0) > 0
for h0 < h∗.
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If h0 > h∗, then we set u = δϕ1(x), for t ≥ T, x ∈ [0, h0] (here ϕ1(x) is the
corresponding eigenfunction of λ1). Choose δ > 0 small enough so that δϕ1(x) ≤
min{−λ1/δ1, u(T, x)} for x ∈ [0, h0]. After a straightforward calculation, we obtain

∂u
∂t

− d1
∂2u
∂x2

− u(b1(x) − δ1(φv∗ + ε) − δ1u)

= δϕ1(x)(λ1 + δ1δϕ1(x)) ≤ 0, t > T, 0 < x < h0,

∂xu(t, 0) = 0, t > T,

u(t, h0) = 0, t > T,

u(0, x) = δϕ1 ≤ u(T, x), 0 ≤ x ≤ h0.

(47)

By the comparison principle, we have u ≥ u for t ≥ T, x ∈ [0, h0]. Hence,

lim inf
t→∞

‖u(t, ·)‖C[0,h0] ≥ δϕ1(0) > 0.

Similarly, we have h∞ = +∞; hence, spreading occurs. !

Theorem 4.4: If d1 > d∗
1 and u0 is small enough, then ‘vanishing’ occurs.

Proof: We consider the following problem as an auxiliary to the !rst equation of (6):

∂u
∂t

= d1uxx + u(b1(x) − δ1u), t > 0, 0 < x < h0,

ux(t, 0) = u(t, h0) = 0, t > 0,

u(0, x) = u0(x), x ∈ [0, h0].

(48)

Denote the principal eigenvalue λ1 and the corresponding positive eigenfunction φ1 satisfy

d1φxx + φb1(x) + λφ = 0, 0 < x < h0,
φx(0) = φ(h0) = 0. (49)

One can verify that there exists d∗
1 such that λ1 > 0, when d1 > d∗

1 . Furthermore, it follows,
from Theorem 4.2 in [40], that there exists a constant B such that φ′

1(x) ≤ 2h0Bφ1(x) for
all x ∈ [0, h0]. Now, we can use the following auxiliary functions, which were constructed
in [40]. Let

h(t) = h0
(
1 + α − α

2
e−αt

)
, for t ≥ 0 and

u(t, x) = βe−αtφ1

(
xh0
h(t)

)
, for t ≥ 0 and 0 ≤ x ≤ h(t).
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The conditions on α and β will be determined later. If we let 0 < α ≤ 1, direct calculations
show that

∣∣∣∣
h20

h̄2(t)
b1

(
xh0
h̄(t)

)
− b1(x)

∣∣∣∣ ≤
h20

h̄2(t)

∣∣∣∣b1
(
xh0
h̄(t)

)
− b1(x)

∣∣∣∣ +
∣∣∣∣

(
h20

h̄2(t)
− 1

)
b1(x)

∣∣∣∣

≤
∣∣∣∣b1

(
xh0
h̄(t)

)
− b1(x)

∣∣∣∣ + ‖b1‖C([0,2h0])

∣∣∣∣
h20

h̄2(t)
− 1

∣∣∣∣

≤ 2
[
h0‖b1‖C1([0,2h0]) + ‖b1‖C([0,2h0])

] ∣∣∣∣
h0
h(t)

− 1
∣∣∣∣ .

Since h(t) → h0 as α → 0, we can !nd su#ciently small α1, such that
∣∣∣∣
h20

h̄2(t)
b1

(
xh0
h̄(t)

)
− b1(x)

∣∣∣∣ ≤ λ1
4

for α ≤ α1.

Moreover, there exists α2 > 0, small enough, such that

2h20Bα ≤ 1
4
λ1 and

1
(1 + α)2

≥ 3
4
, for α ≤ α2.

Let α = min{1, λ1/4,α1,α2}. Direct calculation leads to

ut − d1uxx − b1(x)u = −αu − βe−αtφ′
1

(
xh0
h

)
xh0h

′
(t)

h2(t)

− βe−αtd1φ′′
1

(
xh0
h(t)

)
h20

h2(t)
− b1(x)u

= −αu − βe−αtφ′
1

(
xh0
h

)
xh0h

′
(t)

h2(t)

+
[

h20
h2(t)

b1
(
xh0
h(t)

)
− b1(x)

]

u +
h20

h2(t)
λ1u

≥ −αu − 2h20Bα2u − λ1u
4

+ λ1u
(1 + α)2

≥ u
(−λ1

4
+ −λ1

4
+ −λ1

4
+ 3λ1

4

)
= 0.

Furthermore, we choose 0 < β ≤ −h0α2/2µφ′
1(h0). Then,

−µux(t, h(t)) = −βµe−αtφ′
1(h0)

h0
h(t)

≤ −βµe−αtφ′
1(h0)

≤ h0α2

2
e−αt = h′

(t).
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In order to apply the comparison principle, we choose u0 small enough such that

u0(x) ≤ βφ1

(
x

1 + α
2

)
, for x ∈ [0, h0].

Thus, we have

∂u
∂t

− d1uxx − u(b1(x) − δ1u) ≥ 0, t > 0, 0 < x < h(t),

ux(t, 0) = u(t, h(t)) = 0, t > 0,

h′
(t) ≥ −µux(t, h(t)), t > 0,

u(0, x) = βφ1

(
x

1 + α
2

)
≥ u0(x), x ∈ [0, h0],

h(0) = h0
(
1 + α

2

)
> h0.

(50)

Form the comparison principle, we have h(t) ≤ h(t) for t>0 and

u(t, x) ≤ u(x, t) for t > 0 and x ∈ [0, h(t)].

So, h∞ ≤ limt→+∞ h(t) = h0(1 + α) < +∞. This implies that vanishing occurs. !

Moreover, we can derive vanishing criteria in terms of the coe#cient µ when d1 > d∗
1 .

Theorem 4.5: Suppose that d1 > d∗
1 . For any given u0, there exists µ∗ depending on u0 and

h0, such that vanishing occurs whenever µ ≤ µ∗.

Proof: As in the proof of the Theorem 4.4, let λ1 and φ1 satisfy Equation (49). We still
de!ne u, h(t) as follows

u(t, x) = β1e−αtφ1

(
xh0
h(t)

)
, for t ≥ 0, 0 ≤ x ≤ h(t).

h(t) = h0
(
1 + α − α

2
e−αt

)
, for t ≥ 0.

Here, we also let α = min{1, 14λ1,α1,α2} and choose β1 > 0 large enough such that

u0(x) ≤ β1φ1

(
x

1 + α
2

)
, for x ∈ [0, h0].

For this !xed β1, we choose

0 < µ ≤ − h0α2

2β1φ
′
1(h0)

=: µ∗
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such that

−µux(t, h(t)) = −β1µe−αtφ′
1(h0)

h0
h(t)

≤ −β1µe−αtφ′
1(h0)

≤ h0α2

2
e−αt = h′

(t).

Then, we have

∂u
∂t

− d1uxx − u(b1(x) − δ1u) ≥ 0, t > 0, 0 < x < h(t),

ux(t, 0) = u(t, h(t)) = 0, t > 0,

h′
(t) ≥ −µux(t, h(t)), t > 0,

u(0, x) = β1φ1

(
x

1 + α
2

)
≥ u0(x), x ∈ [0, h0],

h(0) = h0
(
1 + α

2

)
> h0.

(51)

Form the comparison principle, we have h(t) ≤ h(t), for t > 0, and

u(t, x) ≤ u(x, t), for t > 0 and x ∈ [0, h(t)].

Thus,

h∞ ≤ lim
t→+∞

h(t) = h0(1 + α) < +∞.

This implies that vanishing occurs. !

Next, we will prove the following conclusions.

Theorem 4.6: Assume that b1(x) satis!es (B3),where B(x) is replaced by b1(x). If h∞ ≤ h∗,
then the species u vanishes eventually.

Proof: Choose l ∈ [h∞, h∗]. Consider the following equation:

∂ū
∂t

− d1ūxx + ū(b1(x) − δ1ū) = 0, t > 0, 0 < x < l,

ūx(t, 0) = ū(t, l) = 0, t > 0,

ū(0, x) = u0(x), x ∈ [0, h0],

ū(0, x) = 0, x ∈ [h0, l].

(52)

It follows from the comparison principle that 0 ≤ u ≤ ū for t>0 and x ∈ (0, l). Since l ≤
π/2

√
d1/maxx∈[0,+∞) b1(x) =: h∗, Proposition 3.1 of [4] yields that

lim
t→+∞

‖ū(t, ·)‖C[0,l] = 0.

Consequently, limt→+∞ ‖u(t, ·)‖C[0,l] = 0. !
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Under some assumptions, stated below, we can obtain the asymptotic spreading speed
from Theorem 3.6 of [9].

Theorem 4.7: Assume that b1(x) satis!es (B3), where B(x) is replaced by b1(x). If h∞ =
+∞, then

lim sup
t→+∞

h(t)
t

≤ β0

(
µ, max

x∈[0,+∞)
b1(x), δ1, d1

)
.

Furthermore, if b1(x) − δ1φv∗ satis!es (B3), then

lim inf
t→+∞

h(t)
t

≥ β0

(
µ, min

x∈[0,+∞)
(b1(x) − δ1φv∗), δ1, d1

)
.

5. Summary and conclusions

We studied a reaction-di"usion model with a free boundary in one-dimensional environ-
ment. The model is developed to better understand the dynamics of Wolbachia infec-
tion under the assumptions supported by recent experiments such as perfect maternal
transmission and complete CI.

In the special case of constant birth rates, we only considered the !tness bene!t case. For
the !tness bene!t case, where the environment is more favourable for infectedmosquitoes,
our results show that the spreading of Wolbachia infection occurs if either the size of
the initial habitat of infected population h0 is large enough, say h0 ≥ h∗

0 (Theorem 3.3),
or the boundary moving coe#cient µ is su#ciently large (µ ≥ µ̄) in case of h0 < h∗

0
(Theorem 3.4). A rough estimate on the spreading speed of h(t) is also provided.Moreover,
if h0 < π/2

√
d1/b1 < h∗

0 and µ ≤ µ, then the infection cannot spread and h∞ < +∞.
The case of inhomogeneous (spatially dependent) birth rates is treated in Section 4.

Detailed criteria for spreading and vanishing are derived in Subsection 4.2 with the aid of
spectral properties of relevant eigenvalue problems.
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